Радиатор от процессора установить транзисторы. Просмотр полной версии

= ([Температура в горячей точке, грЦ ] - [Температура в холодной точке, грЦ ]) / [Рассеиваемая мощность, Вт ]

Это означает, что если от горячей точки к холодной поступает тепловая мощность X Вт, а тепловое сопротивление составляет Y грЦ / Вт, то разница температур составить X * Y грЦ.

Формула для расчета охлаждения силового элемента

Для случая расчета теплоотвода электронного силового элемента то же самое можно сформулировать так:

[Температура кристалла силового элемента, грЦ ] = [Температура окружающей среду, грЦ ] + [Рассеиваемая мощность, Вт ] *

где [Полное тепловое сопротивление, грЦ / Вт ] = + [Тепловое сопротивление между корпусом и радиатором, грЦ / Вт ] + (для случая с радиатором),

или [Полное тепловое сопротивление, грЦ / Вт ] = [Тепловое сопротивление между кристаллом и корпусом, грЦ / Вт ] + [Тепловое сопротивление между корпусом и окружающей средой, грЦ / Вт ] (для случая без радиатора).

В результате расчета мы должны получить такую температуру кристалла, чтобы она была меньше максимально допустимой, указанной в справочнике.

Где взять данные для расчета?

Тепловое сопротивление между кристаллом и корпусом для силовых элементов обычно приводится в справочнике. И обозначается так:

Пусть Вас не смущает, что в справочнике написаны единицы измерения K/W или К/Вт. Это означает, что данная величина приведена в Кельвинах на Ватт, в грЦ на Вт она будет точно такой же, то есть X К/Вт = X грЦ/Вт.

Обычно в справочниках приведено максимально возможное значение этой величины с учетом технологического разброса. Она нам и нужно, так как мы должны проводить расчет для худшего случая. Для примера максимально возможное тепловое сопротивление между кристаллом и корпусом силового полевого транзистора SPW11N80C3 равно 0.8 грЦ/Вт,

Тепловое сопротивление между корпусом и радиатором зависит от типа корпуса. Типичные максимальные значения приведены в таблице:

TO-3 1.56
TO-3P 1.00
TO-218 1.00
TO-218FP 3.20
TO-220 4.10
TO-225 10.00
TO-247 1.00
DPACK 8.33

Изоляционная прокладка. По нашему опыту правильно выбранная и установленная изолирующая прокладка увеличивает тепловое сопротивление в два раза.

Тепловое сопротивление между корпусом / радиатором и окружающей средой . Это тепловое сопротивление с точностью, приемлемой для большинства устройств, рассчитать довольно просто.

[Тепловое сопротивление, грЦ / Вт ] = [120, (грЦ * кв. см) / Вт ] / [Площадь радиатора или металлической части корпуса элемента, кв. см ].

Такой расчет подходит для условий, когда элементы и радиаторы установлены без создания специальных условий для естественного (конвекционного) или искусственного обдува. Сам коэффициент выбран из нашего практического опыта.

Спецификация большинства радиаторов содержит тепловое сопротивление между радиатором и окружающей средой. Так что в расчете надо пользоваться именно этой величиной. Рассчитывать эту величину следует только в случае, если табличных данных по радиатору найти не удается. Мы часто для сборки отладочных образцов используем б/у радиаторы, так что эта формула нам очень помогает.

Для случая, когда отвод тепла осуществляется через контакты печатной платы, площадь контакта также можно использовать в расчете.

Для случая, когда отвод тепла через выводы электронного элемента (типично диодов и стабилитронов относительно малой мощности), площадь выводов вычисляется, исходя из диаметра и длины вывода.

[Площадь выводов, кв. см. ] = Пи * ([Длина правого вывода, см. ] * [Диаметр правого вывода, см. ] + [Длина левого вывода, см. ] * [Диаметр левого вывода, см. ])

Пример расчета отвода тепла от стабилитрона без радиатора

Пусть стабилитрон имеет два вывода диаметром 1 мм и длиной 1 см. Пусть он рассеивает 0.5 Вт. Тогда:

Площадь выводов составит около 0.6 кв. см.

Тепловое сопротивление между корпусом (выводами) и окружающей средой составит 120 / 0.6 = 200.

Тепловым сопротивлением между кристаллом и корпусом (выводами) в данном случае можно пренебречь, так как оно много меньше 200.

Примем, что максимальная температура, при которой будет эксплуатироваться устройство, составит 40 грЦ. Тогда температура кристалла = 40 + 200 * 0.5 = 140 грЦ, что допустимо для большинства стабилитронов.

Онлайн расчет теплоотвода - радиатора

Обратите внимание, что у пластинчатых радиаторов нужно считать площадь обеих сторон пластины. Для дорожек печатной платы, используемых для отвода тепла, нужно брать только одну сторону, так как другая не контактирует с окружающей средой. Для игольчатых радиаторов необходимо приблизительно оценить площадь одной иголки и умножить эту площадь на количество иголок.

Онлайн расчет отвода тепла без радиатора

Несколько элементов на одном радиаторе.

Если на одном теплоотводе установлено несколько элементов, то расчет выглядит так. Сначала рассчитываем температуру радиатора по формуле:

[Температура радиатора, грЦ ] = [Температура окружающей среды, грЦ ] + [Тепловое сопротивление между радиатором и окружающей средой, грЦ / Вт ] * [Суммарная мощность, Вт ]

[Температура кристалла, грЦ ] = [Температура радиатора, грЦ ] + ([Тепловое сопротивление между кристаллом и корпусом элемента, грЦ / Вт ] + [Тепловое сопротивление между корпусом элемента и радиатором, грЦ / Вт ]) * [Мощность, рассеиваемая элементом, Вт ]

Влияние окружения компонента.

Возможно, площадь меди в верхнем слое, на который устанавливается компонент, сказывается на характеристиках охлаждения. Второй элемент, который может оказать влияние – количество припоя, используемого при монтаже.

В качестве нагревательного элемента будет использован транзистор в корпусе DPAK при мощности 2.5 Вт.

Проверка влияния медной зоны вокруг компонента (DPAK), температура кристалла:

Интересно, что еще от 3 до 5 градусов можно выиграть, если просто нанести большее количество припоя вокруг металлической пластины компонента (вывод стока). Обычно же при монтаже компонентов не заботятся о теплопередаче через контактирующие поверхности, и это ошибка. Вокруг детали наибольшее сопротивление потерь и нанесение припоя может оказать реальную помощь.

Измерение качества передачи тепла по печатной плате.

До сих пор снимали градиент температур только для одного случая – без участия вентилятора. Но при искусственном охлаждении эффективность работы печатной платы должна упасть из-за сопротивления потерь передачи тепла вдоль платы. Повторим тест, но добавим работу вентилятора с очень маленькой и нормальной производительностью (3.5 и 7 вольт). Транзистор поменяем на D2PAK, для симуляции группы небольших транзисторов.

"Внт." – температура кристалла, остальное снято с обратной стороны печатной платы, точка "0" под центром металлической пластина транзистора (D2PAK , 5 Вт ).

Вентилятор Внт. 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30
0 66.2 38.7 38 37.1 35.7 34.3 32 30.4 26.3 25 24.2 23.5 20.9 19.7
3.5 В 53.9 28.2 27.9 27 25.5 24.1 22.9 20 16 15 14.2 13.3 11.3 9.7
7 В 47.7 22 21.8 21.5 20.2 19.2 18.1 16 12.2 11.5 10.7 10 8.2 7.2

В данных есть небольшие нарушения монотонности, что вызвано неоднородной печатной платой.

Эффективная длина радиатора зависит от скорости обдува, если исходить из границы пятидесятипроцентного снижения, то рабочая длина составит:

  • Без обдува – 30 мм.
  • Низкая скорость обдува (вентилятор 3.5 В) – 22.5 мм.
  • Высокая скорость обдува (вентилятор 7 В) – 20 мм.

Прошу обратить внимание, измерения проводились от центра к периферийной части, поэтому общий размер длины получается в два раза больше.

Ориентация в пространстве и цвет печатной платы.

Печатная плата выполняет функцию радиатора и относительно успешно. Но для радиатора важна ориентация в пространстве и цвет его покрытия. Теплопередача может осуществляться за счет нагрева окружающего воздуха или посредством излучения. Если радиатор темного цвета, то эффективность передачи тепла излучением повышается, обещают улучшение отдачи до х1.7 раз. Может, стоит красить платы в черный цвет?

Тестовая установка простая – многослойная печатная плата 25х40 мм (10 см 2 х2 стороны), в центре припаян транзистор в корпусе DPAK. Мощность та же, что и в других тестах с этим транзистором, 2.5 Вт.

Полученные данные сведены в таблицу:

Неравномерность температуры в пределах стороны платы не превышает четырех градусов.

Изначально на печатной плате была защитная маска черного цвета. Для получения светлого цвета маска с обеих сторон удалялась. Теория говорит, что это должно было повлечь ухудшение эффективности в 1.7 раза, ведь передача тепла методом излучения уменьшилась во много раз. В реальности ухудшение работы составило всего лишь 25 процентов. Согласно теории, плоский радиатор лучше работает в вертикальном положении. Без маски это всего 18 процентов, а с маской едва ощутимо. Похоже, маска слишком толстая и мешает теплопередаче.

Средняя температура платы 50 градусов (температура обратной стороны не интересна), мощность 2.5 Вт, отсюда можно вычислить термосопротивление подобного "радиатора" – 20 градусов на ватт при площади 10 см 2 . Или, при 200 см 2 тепловое сопротивление 1 градус на ватт.

Ничего сверхнеобычного, специально перекрашивать плату в черный цвет точно не стоит. Но это объясняет любовь производителей к темным платам.

Тепловое сопротивление.

Для измерения теплового сопротивления потребуется много откалиброванного оборудования и материалов, что достаточно проблематично, поэтому просто измерим падение температуры на тестовом материале. В качестве генератора тепла возьмем транзистор в корпусе DPAK при мощности 2.5 Вт. Его активная поверхность отвода тепла примерно 5х5 мм.

Тепловые потери измерялись как разность температур между точками "A" и "B".

Контрольные точки выбраны не слишком удачно, но этот способ выдержан для снятия характеристик всех материалов. Тепловые потери на двух переходах сред и термопасты учитываются.

Особенности проведения измерений:

  • При измерении потерь в платах, нагревательный элемент к ним припаивался, а обратная сторона зачищалась от окислов и покрытий до чистой меди.
  • В корпусах BGA и TSOP выбиралось место без полупроводникового кристалла, с краю.
  • В качестве ’пластины из железа’ использовался небольшой фрагмент из конструкции системного блока.
  • Теплопроводящие прокладки сняты из аппаратуры, поэтому точные характеристики неизвестны. Красный из фирменного блока питания, серый – из обычного китайского "noname".

Результаты:

Материал Толщина, мм Температура, градусов Приведено к 1 мм, градусов
Многослойная печатная плата 1.5 10.3 6.9
Двухсторонняя печатная плата 1.5 69.4 46.3
Корпус микросхемы BGA 0.76 18.8 24.7
Корпус микросхемы TSOP 0.98 31.7 32.3
Пластина из железа 0.6 4.2 7
Теплопроводящая прокладка (красная) 0.3 11.7 37.3
Теплопроводящая прокладка (серая) 0.37 16.9 45.7
Прокладка из керамики (белая) 0.64 4.9 7.6

Разница в температурах многослойной и обычной платы просто дикая. Понятно, что FR4 плохо проводит тепло, но чтоб тонкие прослойки меди были настолько эффективны…

Сама же теплопроводность корпусов не слишком хорошая, что вполне ожидаемо.

По термопрокладкам тоже не особо красивые цифры, но что есть, то есть. На их фоне керамика выглядит просто великолепно, но ее не удастся использовать в компьютерной технике – просто незачем. Назначение термопрокладок в выбирании различной высоты компонентов, а керамика жесткая и в этом вопросе не поможет. Какая именно была керамика в моем случае, сказать трудно. Судя по цвету и тепловому сопротивлению, это бериллиевая керамика.

Как использовать данные таблицы? Да очень просто – тепловое сопротивление железа известно, остальные цифры пересчитываются пропорционально.

Практическое применение

Для начала вы можете воспользоваться методикой расчета радиатора по материалу, опубликованному на сайте electrosad.ru (pdf, 186 Кб). Или можно вспомнить правило – ‘не грузи и не загрузим будешь’. На фабричные радиаторы есть технические характеристики, а с самодельными … можно применять упрощенные расчеты, ведь точные расчеты смысла не несут, очень уж много непредсказуемых параметров. Вы знаете тепловое сопротивление корпуса или печатной платы именно вашей системной платы? А ведь тепловая проводимость платы зависит, в том числе, и от трассировки ее внутренних слоев. При этом хорошо бы учесть, что с организацией обдува тоже подчас не всё хорошо.

Итак, упрощенный расчет. Если надо точнее, то, пожалуйста, воспользуйтесь приведенной выше ссылкой на методику, а по остальным вопросам – увы, только самостоятельные исследования и чтение документации по компонентам. К сожалению, "общие" рекомендации слишком упрощены, местами дико.

Пункт 1 – тепловая мощность.

По преобразователям питания процессора все довольно просто, их КПД колеблется вокруг цифры 80%. При этом сразу следует учесть, что они проектируются на определенную мощность потребления и при превышении (или соразмерно) этой цифры КПД преобразования энергии начинает уменьшаться. Грубо говоря, стоит брать эффективность 82% для пониженной нагрузки, и 76% нормальной – для большой. Мощность потерь составит соответственно 22 и 32 процента от выходной мощности. Расчеты для низкой мощности производить труднее, даже при сильных упрощениях, ведь потери в компонентах преобразователя пропорциональны квадрату выходного тока.

Например, в материнской плате, рассчитанной на TDP 120 Вт, установлен процессор с потреблением 70 Вт. В данном случае нагрузка не является повышенной, ожидается предполагаемый КПД 82%. При этом от источника питания потребляется 70*100/82 = 85.4 Вт. Из этой цифры 70 Вт уходит в процессор, а 85.4-70 = 15.4 Вт рассеивается на элементах преобразователя.

Тот же случай, но с использованием более мощного (по потреблению) процессора с разгоном даст несколько иную картину. Если он потребляет 140 Вт (цифры условны), то предполагается снижение КПД преобразователя до 76%. Потери составят уже совсем другие цифры: 140*100/76 = 184.2 Вт от источника питания, или 184.2-140 = 44.2 Вт на элементы преобразователя.

Хочу сразу отметить, что далеко не все эти потери вызваны транзисторами. Что-то, и весьма большое, рассеивается на индуктивностях, трассировке и, немного - на конденсаторах. Как разделить полученную цифру на транзисторы и всех остальных? Всё очень сильно зависит от примененных компонентов. Скажем, две трети тепла рассеивается на транзисторах. Только не спрашивайте, откуда взялась цифра. А потолок надо побелить.

Итак, надо рассмотреть два варианта: 15.4х2/3 = 10 Вт и 44.2*2/3 = 29 Вт.

Пункт 2 – активная площадь поверхности печатной платы.

Давайте возьмем какую-нибудь материнскую плату и посмотрим, во что это выльется.

В этой плате используются компоненты в корпусе LFPAK, эффективно отдающие тепло в печатную плату. Прекрасно, расчеты можно вести без особых усложнений. Если бы компоненты плохо отводили тепло в плату, то расчет эффективности рассеивания тепла был бы чрезвычайно сложен и проще сразу переходить к выбору дискретного радиатора, игнорируя теплорассеивающие свойства платы.

Вначале уберем те участки, которые не могут отводить тепло от преобразователя.

Остается измерить оставшуюся поверхность. Если не учитывать зону нижнего левого края с надписью ‘BIOSTAR’, то получается два прямоугольника – верхний 55х120 мм и правый 45х85 мм.

Ранее рассматривалась эффективность отвода тепла печатной платой. Из полученных результатов выходило, что ширина более 60 мм не эффективна (поэтому игнорировали левую часть платы). В моем случае ширина 55 и 45 мм, что удовлетворяет условию без ограничений. В итоге получается площадь поверхности 55х120 + 45х85 = 104 см 2 .

Есть один нюанс, который портит общее впечатление. Дело в том, что на плате расположены и другие компоненты, кроме преобразователя, и они тоже подогревают печатную плату. Для порядка, стоит отметить, что эти компоненты выступают как небольшие радиаторы и тоже рассеивают тепло. На данной картинке присутствует разъем процессора, и он (точнее, процессор) тоже греется. Но несильно, термозащита процессора настроена на температуру порядка 60 градусов по верхней крышке. Что до нижней части процессора, то она ниже температуры крышки. К тому же, между дном процессора и печатной платой находится прослойка контактов, которые не особо хорошо передают тепло. Так что, тепловой подогрев от процессора можно не учитывать.

Пункт 3 – площадь и мощность на один транзистор.

В преобразователе десять фаз, в каждой по три транзистора. Понятно, что тепловые потери не распределяются равномерно по всем компонентам, но и расчеты примерны.

На один транзистор приходится 104/(10*3) = 3.5 см 2 площади печатной платы. Мощность:
Первый вариант - 10/(10*3) = 0.33 Вт.
Второй вариант - 29/(10*3) = 0.97 Вт.

Извините, небольшое уточнение по методике. Ранее рассмотрены исследования при использовании достаточно больших участков печатной платы, которые во много раз превышают цифру 3.5 см 2 , полученную в этом расчете. Это означает, что предыдущее исследование было неверным? Отнюдь, посмотрите внимательнее на картинку, транзисторы собраны в группу и тепло рассеивается довольно протяженным участком платы (45 и 55 мм).

Пункт 4 – расчет радиатора.

Если дана мощность и перегрев, то можно вычислить требуемую площадь поверхности. Для этого надо решить, сколько будет закладываться на перегрев. В системном блоке обычной температурой считается 35 градусов, выше 50 градусов компонент воспринимается как горячий. Выходит, что на перегрев остается 50-35 = 15 градусов.

Прошу заметить, эти рассуждения затрагивают температуру радиатора (печатной платы), у кристалла температура окажется несколько выше.

Для начала, попробуем обойтись без принудительного обдува.

Площадь поверхности платы (вернее, одной стороны) уже рассчитали. Далее, эту цифру надо умножить на 1.5, ведь у платы две стороны. Почему не удвоить? Здесь два момента:

  • Во-первых, обратная сторона материнской платы рассеивает тепло не особо эффективно.
  • Во-вторых, сама печатная плата сделана не из чистой меди и из-за потерь работает не столь эффективно.

После вычисления эффективной поверхности (приведенной к идеальной пластинке), к ней можно применить упрошенную формулу расчета – поверхность 300 см 2 нагревается на один градус при подведении мощности один ватт. Но можно обойтись еще более простым решением - ранее измеряли, для темной печатной платы (естественно многослойной) коэффициент 1 градус на ватт приходится на (одну сторону) поверхности 200 см 2 .

Для наихудшего случая, 0.97 Вт, необходимая площадь радиатора составит 0.97*200/15 = 13 см 2 .

Ну вот, настало время прослезиться. Если бы на плате под транзистор приходилось 13 см 2 , то ни о каком радиаторе задумываться не пришлось. А так… только 3.5 см 2 .

Если взять меньшую мощность (первому варианту требовалось только 0.33 Вт), то необходимая площадь радиатора составит 0.33*200/15 = 4.4 см 2 .

Гм. Если не использовать дополнительный радиатор, то первый вариант вполне работоспособен, только перегрев будет уже 19 градусов вместо 15. Не смертельно, температура самого транзистора выйдет 54 градуса. Что до второго случая, то отсутствие радиатора скажет весьма жестко – перегрев 56 градусов или температура 91 градус.

Понятно, почему производитель этой материнской платы установил на транзисторы радиатор. В первом приближении, для нормального функционирования преобразователя нужен радиатор 13 см 2 * 30 = 390 см 2 , довольно большого размера. Попробую высказать безосновательное предположение, что установленный производителем радиатор обладает эффективной поверхностью гораздо меньше требуемой, а значит, возникнет потребность в дополнительном обдуве.

Выводы

Война - ерунда, главное маневры!

Выводы, вторая попытка.

Ммм …. Выводы что-то совсем не пишутся, может ?

Почти все корпуса обладают пластиковым (керамическим) верхом, что затрудняет отвод тепла через него. Можно поставить радиатор и/или обдувать мощным воздушным потоком, но всё равно эффект останется посредственным. Ну, не предназначены они для этого, что ж тут поделать. Причем, дело не облегчает тот факт, что кристалл находится достаточно глубоко под поверхностью.

Если в корпусе применяется соединение выводов того вида, что рассмотрено в разделе TSOP, то материал корпуса должен быть выше на толщину выводов и небольшой запас над ними, для электрической изоляции. Если же выводы утоплены в глубь корпуса, находятся вокруг кристалла (смотреть картинку в разделе QFN), то все равно требуется ощутимый запас над кристаллом, ведь проволочки соединения кристалл–выводы немного поднимаются над пластиной полупроводника. Именно поэтому я отдельно не тестировал такую распространенную сборку, как drMOS – смысла нет. Это все тот же "TSOP", по методу подключения силовых выводов (а значит, и толщины верхней крышки над кристаллом); и QFN, по методу отвода тепла в печатную плату.

И по отводу тепла через пластину в дне. Обычный корпус, без вставок, несколько поднят над платой и очень плохо отдает тепло через дно. Зазор оставлен не по чьей-то особой вредности, это требуется технологически – на печатной плате могут быть локальные дефекты (защитной маски, маркировки, рельефность многослойной платы), да и при формовке выводов и изготовлении корпуса существует разброс параметров.

Основная задача корпуса SMD – гарантировать надежное прилегание выводов, всех выводов, к контактным площадкам печатной платы. Отсюда и появляется зазор между корпусом и платой. Он небольшой, но теплоизоляционные свойства у него "хорошие". Если компонент выделяет много тепла, то может быть применена модифицированная редакция корпуса, с металлической пластинкой в дне. При этом полупроводниковый кристалл монтируется на эту пластину, иначе нет смысла городить огород. Решение хорошее, но почему оно не распространено? Если забыть про немного возросшую стоимость корпуса и затаривания кристалла, то остается весьма серьезная проблема – ‘металлическое’ дно мешает трассировке платы.

Нельзя просто так положить подобный корпус на плату, защитная маска не может гарантировать отсутствия замыкания. Даже если выкрутить руки технологам и поставить, то всё равно плохо – в современной электронике все цепи представляют собой линии, а у них есть вполне определенный импеданс. И поскольку металл дна находится прямо над проводниками, то импеданс будет изменен и не соответствовать расчетному. Если у цепи импеданс меняется на своем протяжении, то возникают частичные локальные отражения и форма сигнала искажается.

Поэтому, если используется корпус с металлом в дне, то соответствующую зону платы приходится изолировать от трассировки. Обычно если металл в дне есть, то он занимает значительную ее часть, что неизбежно сказывается на качестве трассировки цепей – банально меньше места. Поэтому хоть сами по себе вставки и полезны, но их не ставят по объективным причинам. Впрочем, стоит отметить – в микросхемах довольно часто устанавливают полупроводниковые кристаллы на теплораспределительные пластины, просто они не видны, будучи изолированы в корпусе. При этом улучшается отвод тепла, а внешне корпус выглядит традиционным.

К слову, я как-то смотрел микросхемы SDRAM в корпусе TSOP – в них использовался полупроводниковый кристалл огромного размера, во всё пространство корпуса. При этом кристалл был смонтирован на тонкой медной пластинке. Микросхемы памяти крайне чувствительны к локальному нагреву, поэтому введение пластинки весьма оправдано.

По результатам измерений накопились некоторые общие выводы, пора их собрать в одном месте.

Типы корпусов влияют на механизм охлаждения. Если в упаковке не предусмотрен отвод тепла в плату (TSOP, SOIC и аналогичные), то не следует рассчитывать на эффективный отвод тепла средствами печатной платы. В случае корпуса с развитой поверхностью можно возложить надежды на обдув. А иначе придется устанавливать дополнительный радиатор.

Термопрокладки есть зло, их вредоносная сущность четко отразилась в измерениях. В ряде корпусов введение этого элемента приводит к результату худшему, чем без радиатора вовсе. Увы, при применении группового радиатора, общего на несколько корпусов, без данного зла не обойтись – хоть немного, но корпуса отличаются по толщине, а термопрокладка призвана выбрать разницу. Часть корпусов просто обязывает применение термопрокладки, ведь у них металлический верх, у которого есть электрический контакт со схемой.

Локальные радиаторы лучше группового, ведь не требуют использования термопрокладки, но размеры и форма такого радиатора должна быть соответствующие – большой объем (точнее - поверхность), редкие и высокие иглы или ребра. Обычный размер компонента 5х5 … 10х10 мм, что затрудняет подбор достойного радиатора. Посмотрите результаты тестирования, радиаторы 10 см 2 … 20 см 2 не могут оказать существенного эффекта без принудительного обдува, а это уже весьма крупные конструкции.

Если компонент перегревается, то более эффективно применение обдува, чем установка радиатора. Причина тривиальна – большое тепловое сопротивление через верхнюю крышку. Корпуса просто не предназначены для отвода тепла через верх. Про упаковку DirectFET пока не будем вспоминать, поскольку она не особо распространена. А жаль.

10.1. Назначение радиаторов - отводить тепло от полупроводниковых приборов, что позволяет снизить температуру p-n-переходов и тем самым уменьшить ее влияние на рабочие параметры приборов. Применяют пластинчатые, ребристые и штыревые радиаторы, Для улучшения теплоотвода полу проводниковый при бор лучше всего крепить непосредственно к радиатору Если необходима электрическая изоляция прибора от шасси, радиатор крепят на шасси через изолирующие прокладки. Теплоизлучающая способность радиатора зависит от степени черноты материала (или его поверхности), из которого изготовлен радиатор:

Чем больше степень черноты, тем теплоотвод будет эффективнее.

10.2. Штыревой радиатор -весьма эффективный теплоотвод для полупроводниковых приборов. Для изготовления его требуется листовой дюралюминий толщиной 4-6 мм и алюминиевая проволока диаметром 3-5 мм.
На поверхности предварительно обработанной пластины радиатора намечают кернером места отверстий под штыри, выводы транзисторов (или диодов) и крепежные винты. Расстояние между центрами отверстий (шаг) под штыри в ряду и между рядами должно быть равно 2- 2,5 диаметра применяемой алюминиевой проволоки. Диаметр отверстий выбирают с таким расчетом, чтобы проволока входила в них с возможно меньшим зазором. С обратной стороны отверстия зенкуют на глубину 1- 1,5мм.
Из стального стержня длиной 80-100 и диаметром В-10 мм изготовляют оправку, для чего в торце стержня сверлят отверстие диаметром, на 0,1 мм большим диаметра проволоки. Глубина отверстия должна быть равна высоте будущих штырей радиатора.

Рис. 10.1. Обжимка для штырей радиатора

Затем нарезают требуемое число заготовок штырей. Для этого кусок проволоки вставляют в отверстие оправки и откусывают кусачками так, чтобы длина выступающего из оправки конца была на 1-1,5 мм больше толщины пластины. Оправку зажимают в тиски отверстием вверх, в отверстие вводят заготовку штыря, на выступающий конец которого надевают пластину лицевой стороной и расклепывают его легкими ударами молотка, стараясь заполнить зенкованное углубление. Таким образом устанавливают все штыри.
Штыревой радиатор можно также изготовить, используя несколько иной способ установки штырей в отверстиях пластины основания. Изготовляют стальную обжимку, чертеж которой для штырей диаметром 3 и длиной до 45мм приведен на рис. 10.1. Рабочую часть обжимки следует закалить. Штырь вставляют в отверстие основания радиатора, кладут основание на наковальню, сверху на штырь надевают обжимку и ударяют по ней молотком. Вокруг штыря образуется кольцевая канавка, а сам он оказывается плотно посаженным в отверстии.
Если необходимо изготовить двусторонний радиатор, то потребуется две такие обжимки: в одну из них, установленную на наковальне отверстием вверх, вставляют штырь, нанизывают основание радиатора, а сверху надевают вторую обжимку. Ударом молотка по верхней обжимке фиксируют штырь сразу с двух сторон. Этим способом можно изготовлять радиаторы как из алюминиевых, так и из медных сплавов. И, наконец, штыри можно установить с помощью пайки. Для этого берут в качестве материала медную или латунную проволоку диаметром 2-4 мм. Один конец штыря лудят на длину, большую толщины пластины на 1-2 мм. Диаметр отверстий в пластине должен быть таким, чтобы облуженные штыри входили в них без особого усилия.
В отверстия основания вводят жидкий флюс (табл. 9.2), вставляют штыри и мощным паяльником паяют каждый из них. По окончании работы радиатор промывают ацетоном.

Рис. 10.2. Радиатор для мощного транзистора

10.3. Радиатор из листовой меди толщиной 1-2мм можно изготовить для мощных транзисторов типа П210, КТ903 и других в подобных корпусах. Для этого вырезают из меди круг диаметром 60 мм, в центре заготовки размечают отверстия для крепления транзистора и его выводов. Затем в радиальном направлении надрезают круг ножницами для металла на 20 мм, разделив по окружности на 12 частей. После установки транзистора каждый сектор разворачивают на 90° и отгибают кверху.

10.4. Радиатор для мощных транзисторов типа КТ903, KT908 и других в подобных корпусах можно изготовить из алюминиевого листа толщиной 2мм (рис. 10.2). Указанные размеры радиатора обеспечивают площадь излучающей поверхности, достаточную для рассеяния мощности на транзисторе до 16 Вт.

Рис. 10.3. Радиатор для маломощного транзистора: а-развертка; б- общий вид

10.5. Радиатор для маломощных транзисторов можно изготовить из листовой красной меди или латуни толщиной 0,5 мм в соответствии с чертежами на рис. 10.3. После выполнения всех прорезей развертку сворачивают в трубку, используя оправку соответствующего диаметра. Затем заготовку плотно надевают па корпус транзистора и прижимают пружинящим кольцом, предварительно отогнув боковые крепежные ушки. Кольцо изготовляют из стальной проволоки диаметром 0,5-1 мм. Вместо кольца можно использовать бандаж из медной проволоки. Затем загибают вниз боковые ушки, отгибают наружу на нужный угол надрезанные "перья" заготовки - и радиатор готов.

10.6. Радиатор для транзисторов серии КТ315, КТ361 можно изготовить из полоски меди, алюминия или жести шириной на 2-3 мм больше ширины корпуса транзистора (рис. 10.4). Транзистор вклеивают в радиатор эпоксидным или другим клеем с хорошей теплопроводностью. Для лучшего теплового контакта корпуса транзистора с радиатором необходимо снять с корпуса лакокрасочное покрытие в местах контакта, а установку в радиатор и склеивание выполнить с минимальным возможным зазором. Устанавливают транзистор с радиатором на плату, как и обычно, при этом нижние кромки радиатора должны упираться в плату. Если ширина полоски 7 мм, а высота радиатора (из луженой жести толщиной 0,35 мм) - 22 мм, то при мощности рассеяния 500 мВт температура радиатора в месте приклеивания транзистора не превышает 55 °С.

10.7. Радиатор из "хрупкого" металла, например из листового дюралюминия, выполняют в виде набора пластин (рис. 10.5). При изготовлении прокладок и пластин радиатора необходимо следить, чтобы на кромках отверстий и на краях пластин не было заусенцев. Соприкасавшиеся поверхности прокладок и пластин тщательно [шлифуют на мелкозернистой наждачной бумаге, положив ее на ровное стекло. Если не требуется изолировать корпус транзистора от корпуса прибора, то радиатор можно крепить на стенке корпуса прибора или на внутренней перегородке без изолирующих прокладок, что обеспечивает более эффективную теплоотдачу.

10.8. Крепление диодов типа Д226 на радиаторе или на теплоотводящей пластине. Диоды крепят с помощью фланца. Катодный вывод откусывают у самого основания и тщательно зачищают донышко на мелкозернистой шкурке до получения чистой ровной поверхности. Если необходимо катодный вывод оставить, то в радиаторе сверлят отверстие под вывод, ацетоном с донышка снимают лак и аккуратно опиливают бортик (ободок) диода заподлицо с донышком для лучшего теплового контакта диода с радиатором.

10.9. Улучшение теплового контакта между транзистором и радиатором позволит обеспечить большую мощность рассеяния на транзисторе.
Иногда, особенно при использовании литых радиаторов, удалить раковины и другие изъяны поверхности в месте теплового контакта (для его улучшения) бывает затруднительно, а порой и невозможно. В этом случае поможет свинцовая прокладка. Пластину свинца аккуратно раскатывают или расплющивают между двумя гладкими плоскими брусками до толщины примерно 10,5 мм и вырезают прокладку необходимых размеров и формы. Мелкозернистой шкуркой зачищают обе ее стороны, устанавливают под транзистор и туго сжимают узел винтами. Прокладка не должна быть толще 1 мм, так как теплопроводность свинца невысока.

10.10. Чернение алюминиевых радиаторов. Для повышения эффективности теплоотдачи радиатора его поверхность обычно делают матовой и темной. Доступный способ чернения-обработка радиатора в водном растворе хлорного железа.
Для приготовления раствора требуется равное по объему количество порошка хлорного железа и воды. Радиатор очищают от пыли, грязи, тщательно обезжиривают бензином или ацетоном и погружают в раствор. Выдерживают в растворе 5-10 мин. Цвет радиатора получается темно-серым. Обработку необходимо производить в хорошо проветриваемом помещении или на открытом воздухе.

ЗНАЕТЕ ЛИ ВЫ?

10.11. Тепловой режим маломощных транзисторов можно облегчить, надев на металлический корпус транзистора тор ("баранку") - спираль, свитую из медной, латунной или бронзовой проволоки диаметром 0,5-1,0 мм.
10.12. Хорошим радиатором может быть металлический корпус устройства или его внутренние перегородки.
10.13. Ровность контактной площадки радиатора проверяют, смазав основание транзистора какой-либо краской и приложив его к поверхности контактной площадки. Выступающие участки контакт. ной площадки радиатора окрасятся.
10.14. Для обеспечения хорошего теплового контакта можно поверхность транзистора, прилегающую к радиатору, смазать невысыхающей смазкой, например силиконовой. Это позволит снизить тепловое сопротивление контакта в полтора-два раза.
10.15. Для улучшения условий охлаждения радиатор нужно располагать так, чтобы не создавать помех конвекционным потокам воздуха: ребра радиатора-вертикально, а сторона, на которой расположен транзистор, должна быть сбоку, а не снизу или сверху.

Есть такой параметр, как тепловое сопротивление. Он показывает, на сколько градусов нагревается объект, если в нем выделяется мощность 1 Вт. К сожалению, в справочниках по транзисторам такой параметр приводится редко. Например, для транзистора в корпусе ТО-5 тепловое сопротивление равно 220°С на 1 Вт. Это означает, что если в транзисторе выделяется 1 Вт мощности, то он нагреется на 220°С. Если допускать нагрев не более чем до 100°С, например, на 80°С относительно комнатной температуры, то получим, что на транзисторе должно выделяться не более 80/220 = 0,36 Вт. В дальнейшем будем считать допустимым нагрев транзистора или тиристора не более, чем на 80°С.

Существует грубая формула для расчета теплового сопротивления теплоотвода Q = 50/ VS °С/Вт, (1) где S — площадь поверхности теплоотвода, выраженная в квадратных сантиметрах. Отсюда площадь поверхности можно рассчитать по формуле S = 2.
Рассмотрим в качестве примера расчет теплового сопротивления конструкции, показанной на рисунке. Конструкция теплоотвода состоит из 5 алюминиевых пластин, собранных в пакет. Предположим, W=20 см, D=10 см, а высота (на рисунке не показана) 12 см, каждый «выступ» имеет площадь 10х12 = 120 см2, а с учетом обеих сторон 240 см2. Десять «выступов» имеют площадь 2400 см2, а пластина две стороны х 20 х 12 = 480 см2. Итого получаем S=2880 см2. По формуле (1) рассчитываем Q=0,93°С/Вт. При допустимом нагреве на 80°С получаем мощность рассеяния 80/0,93 = 90 Вт.

Теперь проведем обратный расчет.
Предположим, нужен блок питания с выходным напряжением 12 В и током 10 А. После выпрямителя имеем 17 В, следовательно, падение напряжения на транзисторе составляет 5 В, а значит, мощность на нем 50 Вт. При допустимом нагреве на 80°С получим требуемое тепловое сопротивление Q=80/50=1,6°C/Вт. Тогда по формуле (2) определим S= 1000 cм2.

Литература
Конструктор № 4/2000

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 20.09.2014

    Общие сведения об электропроводках Электропроводкой называется совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями. Скрытая электропроводка имеет ряд преимуществ перед открытой: она более безопасна и долговечна, защищена от механических повреждений, гигиенична, не загромождает стен и потолков. Но она дороже, и ее труднее заменить при необходимости. …

  • 27.09.2014

    На основе К174УН7 можно собрать не сложный генератор с 3 под диапазонами: 20…200, 200…2000 и 2000…20000Гц. ПОС определяет частоту генерируемых колебаний, она построена на элементах R1-R4 и С1-С6. Цепь отрицательной ОС уменьшающая нелинейные искажения сигнала и стабилизирующая его амплитуду образована резистором R6 и лампой накаливания Н1. При указных номиналах схемы …

О защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.

Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.

Зачем все это?

При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.

История вопроса

Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:

Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:

Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.

Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.

Простейший путь (диод)

Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:

Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).

Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:

  1. Малое прямое падение напряжения во включенном состоянии.
  2. Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
  3. Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
  4. Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
  5. Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
  6. Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.
Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.

Наивное решение (реле постоянного тока)

При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:

В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.

Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.

Окольный путь (реле переменного тока)

После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:

Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой безтрансформаторной понижающей схемы с простейшим выпрямителем).

Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?

Первое решение (полевой транзистор + измеритель напряжения аккумулятора)

Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.

Примерная схема такого устройства:

Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.

Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:

В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.

Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.

Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.

Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.

Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.

Второе решение (полевой транзистор + измеритель направления тока)

Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.

По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.

Абстрактная реализация будет иметь примерно такой вид:

Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.

На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.

Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:

Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.

Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.

Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:

В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.

Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:

Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.

Вот окончательная схема нашего коммутатора:

Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).

Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.

Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.

Собранное устройство, полностью готовое к монтажу:

Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.



Загрузка...
Top