Как устроена релейная защита линий электропередач. Дистанционная защита линий, принцип работы, ступени, формула Защиты линий 110 кв и принцип действия

В брошюре изложены принципы действия защит линий 110-220 кВ с высокочастотными каналами:дифференциально-фазной защиты типа ДФЗ 201 и высокочастотной блокировки дистанционной и токовой направленной защиты нулевой последовательности на панели ЭПЗ 1643-69. Приведены описания схем релейных и высокочастотных частей указанных защит.

Рассмотрены техническое обслуживание, высокочастотные измерения, проверка ВЧ каналов и эксплуатация этих защит. ...

1. Дифференциально-фазная высокочастотная защита ДФЗ-201

2. Высокочастотная блокировка дистанционной защиты и токовой направленной защиты нулевой последовательности типа ЭПЗ-1643-69

3. Высокочастотные каналы релейной защиты

4. Проверка релейной части ДФЗ-201 при новом включении

5. Проверка релейной части ВЧ блокировки дистанционной защиты и токовой направленной защиты нулевой последовательности типа ЭПЗ-1643-69 при новом включении

6. Проверка ВЧА типа упз-70 при новом включении

7. Проверка элементов ВЧ тракта при новом включении

8. Проверка ВЧ каналов при новом включении

9. Обслуживание ВЧ защит

ПРЕДИСЛОВИЕ

Высокочастотные (ВЧ) защиты получили широкое распространение на линиях 110-220 кВ и более высоких напряжений. В числе разновидностей эксплуатируемых защит значительное место занимают защиты, снятые с производства (дифференциально-фазные типов ДФЗ-2, ДФЗ-402, ДФЗ-501 и высокочастотные блокировки типа ПВБ). Панели ДФЗ-2 и ВЧ блокировки предназначены для работы с высокочастотным аппаратом (ВЧА) типа ПВЗК , а панели ДФЗ-402 и ДФЗ-501 - с ВЧА типа ПВЗД .

В настоящее время выпускаются дифференциально-фазные защиты типов ДФЗ-201, ДФЗ-504, ДФЗ-503 и ВЧ блокировки дистанционных и токовых направленных нулевой последовательности защит . Эти защиты предназначены для совместной работы с ВЧА типа УПЗ-70, которые по сравнению с ПВЗК и ПВЗД обладают расширенным диапазоном рабочих частот, уменьшенным остаточным напряжением на выходе передатчика, усовершенствованной схемой управления, меньшими габаритами и массой, имеют блочную конструкцию. В них применен печатный монтаж, на выходе передатчика использован линейный фильтр.

Совсем недавно промышленностью начат выпуск нового приемопередатчика типа АВЗК-80, выполненного на полупроводниковых элементах. Этот ВЧ аппарат может быть использован со всеми релейными схемами ВЧ защит, выпускаемых в данное время.

Надежное функционирование высокочастотных защит обеспечивает устойчивую работу электроприемников потребителей. Поэтому в комплексе мероприятий по повышению надежности снабжения потребителей электроэнергией особое место занимает качество наладки и эксплуатации устройств релейной защиты и электроавтоматики и, прежде всего, основных ВЧ защит линий.

Наиболее качественно и в то же время с меньшими трудозатратами наладочные работы можно выполнить при условии, что весь объем работ по вводу в эксплуатацию комплектов ВЧ защит производится одной комплексной бригадой. Более широкому внедрению такой организации наладочных работ в значительной степени может способствовать публикация книги, в которой излагаются вопросы наладки как релейных, так и высокочастотных частей ВЧ защит.

Бесперебойная и надежная транспортировка электроэнергии к потребителям - это одна из основных задач, постоянно решаемых энергетиками. Для ее обеспечения созданы электрические сети, состоящие из распределительных подстанций и соединяющих их линий электропередач. Для перемещения энергии на большие расстояния используются опоры, к которым подвешиваются соединительные провода. Они изолированы между собой и землей слоем окружающего воздуха. Такие линии по виду изоляции называют воздушными.

Если расстояние транспортной магистрали небольшое или в целях безопасности необходимо спрятать линию электропередач в земле, то используются кабели.


Воздушные и кабельные линии электропередач постоянно находятся под напряжением, величина которого определена структурой электрической сети.

Назначение релейной защиты ЛЭП

В случае повреждения изоляции любого места кабельной или протяженной воздушной ЛЭП приложенное к линии напряжение создает ток утечки или короткого замыкания через нарушенный участок.

Причинами нарушения изоляции могут стать различные факторы, которые способны самоустраниться или продолжать свое разрушительное воздействие. Например, пролетающий между проводами воздушной ЛЭП аист создал междуфазное замыкание своими крыльями и сгорел, упав рядом.

Или дерево, выросшее очень близко от опоры, во время бури порывом ветра повалено на провода и закоротило их.

В первом случае короткое замыкание возникло на короткий промежуток времени и исчезло, а во втором - нарушение изоляции носит длительный характер и требует устранения обслуживающим электротехническим персоналом.

Такие повреждения способны нанести большой ущерб энергетическим предприятиям. Токи возникающих коротких замыканий обладают огромной тепловой энергией, способной сжечь не только провода подводящих линий, но и разрушить силовое оборудование на питающих подстанциях.

По этим причинам все возникающие повреждения на ЛЭП необходимо мгновенно ликвидировать. Это достигается снятием напряжения с поврежденной линии на питающей стороне. Если же такая ЛЭП получает питание с обеих сторон, то они обе должны отключить напряжение.

Функции постоянного отслеживания электрических параметров состояния всех линий электропередач и снятия с них напряжения со всех сторон при возникновении любых аварийных ситуаций возложены на сложные технические системы, которые называют по сложившейся традиции релейными защитами.

Прилагательное «релейные» образовано от элементной базы на основе электромагнитных реле, конструкции которых возникли с появлением первых линий электропередач и совершенствуются до наших дней.

Широко внедряемые в практику энергетиков модульные защитные устройства не исключают пока полную замену релейных устройств и по сложившейся традиции тоже заносятся в устройства релейных защит.

Принципы построения релейных защит

Органы контроля состояния сети

Для отслеживания электрических параметров линий электропередач необходимо иметь органы их измерения, которые способны постоянно контролировать любые отклонения нормального режима в сети и, одновременно, отвечать условиям безопасной эксплуатации.

В линиях электропередач всех напряжений эта функция возложена на измерительные трансформаторы. Они подразделяются на трансформаторы:

    тока (ТТ);

    напряжения (ТН).

Поскольку качество работы защит имеет первостепенное значение для надежности всей электросистемы, то к измерительным ТТ и ТН предъявляются повышенные требования по точности работы, которые определяются их метрологическими характеристиками.

Классы точности измерительных трансформаторов для использования в устройствах РЗА (релейных защит и автоматики) нормированы величинами «0,5», «0,2» и «Р».

Измерительные трансформаторы напряжения

Общий вид установки трансформаторов напряжения на ВЛ-110 кВ показан на картинке ниже.


Здесь видно, что ТН устанавливаются не в любом месте протяженной линии, а на распределительном устройстве электрической подстанции. Каждый трансформатор подключается своими первичными выводами к соответствующему проводу ВЛ и контуру земли.

Преобразованное вторичными обмотками напряжение выводится через рубильники 1Р и 2Р по соответствующим жилам силового кабеля. Для использования в устройствах защит и измерений вторичные обмотки соединяются по схеме «звезда» и «треугольник», как показано на картинке для ТН-110 кВ.


Для снижения и точной работы релейной защиты используется специальный силовой кабель, а к его монтажу и эксплуатации предъявляются повышенные требования.

Измерительные ТН создаются под каждый вид напряжения линии электропередачи и могут включаться по разным схемам для выполнения определенных задач. Но все они работают по общему принципу - преобразование линейной величины напряжения ЛЭП во вторичное значение 100 вольт с точным копированием и выделением всех характеристик первичных гармоник в определенном масштабе.

Коэффициент трансформации ТН определяется соотношением линейных напряжений первичной и вторичной схемы. К примеру, для рассматриваемой ВЛ 110 кВ его записывают так: 110000/100.

Измерительные трансформаторы тока

Эти устройства тоже преобразовывают первичную нагрузку линии во вторичные значения с максимальным повторением всех изменений гармоник первичного тока.

В целях удобства эксплуатации и обслуживания электрооборудования их тоже монтируют на распределительных устройствах подстанции.


Включаются в схему ВЛ не так, как ТН: они своей первичной обмоткой, которая обычно представлена всего одним витком в виде прямого токовода, просто врезаются в каждый провод фазы линии. Это хорошо видно на приведенной выше фотографии.

Коэффициент трансформации ТТ определяется соотношением выбора номинальных величин на этапе конструирования ЛЭП. Например, если линия электропередач рассчитывается на транспортировку токов 600 ампер, а на вторичной стороне ТТ будет сниматься 5 А, то применяют обозначение 600/5.

В энергетике принято два стандарта значений вторичных токов, которые применяются:

    5 А для всех ТТ до 110 кВ включительно;

    1 А для линий 330 кВ и выше.

Вторичные обмотки ТТ соединяются для подключения к устройствам защит по разным схемам:

    полной звезды;

    неполной звезды;

    треугольника.

Каждое соединение имеет свои специфические особенности и применяется для определенных видов защит различными способами. Пример соединения трансформаторов тока линии и обмоток токовых реле в схему полной звезды показан на картинке.


Этот наиболее простой и распространенный фильтр гармоник используется во многих схемах релейных защит. В нем токи от каждой фазы контролируются индивидуальным одноименным реле, а сумма всех векторов проходит через обмотку, включенную в общий нулевой провод.

Способ использования измерительных трансформаторов тока и напряжения позволяет в точном масштабе переносить первичные процессы, происходящие на силовом оборудовании во вторичную схему для использования их в аппаратной части релейных защит и создания алгоритмов работы логических устройств по ликвидации аварийных процессов на оборудовании.

Органы обработки полученной информации

В релейных защитах основным рабочим элементом является реле - электротехнический прибор, который выполняет две основные функции:

    отслеживает качество контролируемого параметра, например, тока и в нормальном режиме стабильно поддерживает и не изменяет состояние своей контактной системы;

    при достижении критического значения, называемого уставкой или порогом срабатывания, мгновенно переключает положение своих контактов и находится в этом состоянии до тех пор, пока контролируемая величина не вернется в область нормальных значений.

Принципы формирования схем включения реле тока и напряжения во вторичные цепи помогает понять представление синусоидальных гармоник векторными величинами с изображением их на комплексной плоскости.


Внизу картинки показана векторная диаграмма для типичного случая распределения синусоид по трем фазам А, В, С при рабочем режиме электроснабжения потребителей.

Контроль состояния цепей тока и напряжения

Частично принцип обработки вторичных сигналов показан на схеме включения ТТ и обмоток реле по схеме полной звезды и ТН на ОРУ-110. Этот метод позволяет собрать вектора способами, изображенными ниже.


Включение обмотки реле в любую из гармоник этих фаз позволяет полностью контролировать происходящие в ней процессы и отключать схему из работы при авариях. Для этого достаточно использовать соответствующие конструкции релейных устройств тока или напряжения.


Приведенные схемы являются частным случаем многообразного использования различных фильтров.

Способы контроля проходящей по линии мощности

Устройства РЗА контролируют величину мощности на основе показаний все тех же трансформаторов тока и напряжений. При этом используются известные формулы и соотношения полной, активной и реактивной мощностей между собой и выраженные их значения через вектора токов и напряжений.

Здесь учитывается, что вектор тока формируется приложенной ЭДС к сопротивлению линии и одинаково преодолевает его активные и реактивные части. Но при этом происходит падение напряжения на участках с составляющими Ua и Up по законам, описанным треугольником напряжений.

Мощность может передаваться из одного конца линии в другой и даже менять свое направление при транспортировке электроэнергии.

Изменения ее направления возникают в результате:

    переключений нагрузок оперативным персоналом;

    качаний электроэнергии в системе благодаря воздействию переходных процессов и иных факторов;

    возникновения аварийных режимов.

Работающие в составе РЗА реле мощности (РМ) учитывают колебания ее направлений и настраиваются на срабатывание при достижении критической величины.

Способы контроля сопротивления линии

Устройства релейной защиты, оценивающие расстояние до места возникшего короткого замыкания на основе замера электрического сопротивления, называют дистанционными, или сокращенно ДЗ защитами. Они тоже в своей работе используют цепи трансформаторов тока и напряжения.

Для измерения сопротивления применяется , описываемое для участка рассматриваемой цепи.

При прохождении синусоидального тока через активные, емкостные и индуктивные сопротивления вектор падения напряжения на них отклоняется в разные стороны. Это учитывается поведением релейным защит.

По этому принципу в устройствах РЗА работают многочисленные виды реле сопротивлений (РС).

Способы контроля частоты на линии

Для поддержания стабильности периода колебаний гармоник тока, передаваемого по линии электропередач, используются реле контроля частоты. Они работают по принципу сравнения эталонной синусоиды, вырабатываемой встроенным генератором, с частотой, получаемой от измерительных трансформаторов линии.


После обработки этих двух сигналов реле частоты определяет качество контролируемой гармоники и при достижении значения уставки изменяет положение контактной системы.

Особенности контроля параметров линии цифровыми защитами

Приходящие на замену релейным технологиям микропроцессорные разработки тоже не могут работать без вторичных величин токов и напряжений, которые снимаются с измерительных трансформаторов ТТ и ТН.

Для работы цифровых защит информация о вторичной синусоиде обрабатывается методами дискретизации, которые заключаются в наложении на аналоговый сигнал высокой частоты и фиксации амплитуды контролируемого параметра в месте пересечения графиков.


За счет малого шага дискретизации, быстрых способов обработки и применения метода математической аппроксимации получается высокая точность измерения вторичных токов и напряжений.

Вычисленные таким способом цифровые величины используются в алгоритме работы микропроцессорных устройств.

Логическая часть релейных защит и автоматики

После того как первичные величины токов и напряжений передаваемой по ЛЭП электроэнергии смоделированы измерительными трансформаторами, выделены для обработки фильтрами и восприняты чувствительными органами релейных устройств тока, напряжения, мощности, сопротивления и частоты наступает очередь работы логических релейных схем.

В основу их конструкции положены реле, работающие от дополнительного источника постоянного, выпрямленного или переменного напряжения, которое еще называют оперативным, а питаемые им цепи - оперативными. В этот термин вложен технический смысл: очень быстро, без излишних задержек выполнять свои переключения.

От скорости работы логической схемы во многом зависит быстрота отключения аварийной ситуации, а, следовательно, степень ее разрушительных последствий.

По способу выполнения своих задач реле, работающие в оперативных цепях называют промежуточными: они получают сигнал от измерительного органа защиты и передают его коммутацией своих контактов исполнительным органам: выходным реле, соленоидам, электромагнитам отключений или включений силовых выключателей.

Промежуточные реле обычно имеют несколько пар контактов, которые работают на замыкание или размыкание цепи. Они используются для одновременного размножения команд между разными устройствами РЗА.

В алгоритм работы релейных защит довольно часто вводится задержка времени для обеспечения принципа селективности и формирования очередности определенного алгоритма. Она на период действия уставки блокирует работу защиты.

Этот ввод задержки создается с помощью специальных реле времени (РВ), обладающих часовым механизмом, влияющим на скорость срабатывания своих контактов.

Логическая часть релейных защит использует один из множества алгоритмов, созданных для разных случаев, которые могут возникнуть на линии электропередач конкретной конфигурации и напряжения.

В качестве примера можно привести всего лишь некоторые названия работы логики двух релейных защит, основанных на контроле тока ЛЭП:

    токовая отсечка (обозначение быстродействия) без выдержки времени или с выдержкой (обеспечение избирательности РВ) с учетом направления мощности (за счет реле РМ) либо без него;

    максимальная токовая защита , которая может быть наделена теми же контролями, что и отсечка в комплекте с проверкой минимального напряжения на линии или без нее.

В работу логики релейных защит часто вводятся элементы работы автоматики различных устройств, например:

    однофазного или трехфазного повторного включения силового выключателя;

    включения резервного питания;

    ускорения;

    частотной разгрузки.

Логическая часть защиты линии может быть выполнена в небольшом релейном отсеке прямо над силовым выключателем, что характерно для комплектных распределительных устройств наружной установки (КРУН) с напряжением до 10 кВ, или занимать несколько панелей 2х0,8 м в релейном зале.

Например, логика защит линии 330 кВ может размещаться на отдельных панелях защит:

    резервных;

    ДЗ - дистанционной;

    ДФЗ - дифференциально фазной;

    ВЧБ - высокочастотной блокировки;

    ОАПВ;

    ускорения.

Выходные цепи

Оконечным элементом релейной защиты линии служат выходные цепи. Их логика тоже строится на использовании промежуточных реле.

Выходные цепи формируют порядок работы выключателей линии и определяют взаимодействие с соседними присоединениями, устройствами (например, УРОВ - резервного отключения выключателя) и другими элементами РЗА.

У простых защит линии может быть всего одно выходной реле, срабатывание которого приводит к отключению выключателя. В сложных системах разветвленных защит создаются специальные логические цепи, работающие по определенному алгоритму.

Окончательное снятие напряжение с линии при возникновении аварийной ситуации осуществляется силовым выключателем, который приводится в действие усилием электромагнита отключения. Для его работы подводятся специальные цепи питания, способные выдерживать мощные нагруз ки.

Бурное развитие электрических сетей сегодня требует большого числа высокоэффективных защит воздушных линий (ВЛ), используемых для передачи электроэнергии.

К основным требованиям, которые предъявляются к подобным устройствам можно отнести следующие моменты:

Удобство в использовании;
- минимальная цена;
- компактность;
- универсальность;
- селективность.

Обладая такими свойствами, современные виды защит высоковольтных линий способны надёжно сохранять их от всех видов коротких замыканий.

Разновидности . Из наиболее распространённых типов можно выделить следующие:

Дистанционная защита (ДЗ) . В сетях, имеющих сложную конфигурацию, для защиты от коротких межфазных замыканий применятся ДЗ , которая выполняет измерение полного сопротивления ВЛ от измерительных трансформаторов напряжения на подстанциях до непосредственного места возникновения КЗ.

Так как данное сопротивление пропорционально дистанции (расстоянию) до мест короткого замыкания, то и защита получила название дистанционной.

Она сложнее обычных токовых и имеет следующие преимущества:

Зона её действия всегда остаётся постоянной вне зависимости от режима сети и величин токов КЗ;
- имеет направленность действия.

В целях обеспечения селективности действия дистанционной защиты на смежных ВЛ время их действия делают зависимым от расстояния до места возникновения короткого замыкания: дальше КЗ – больше время срабатывания.

Защита выполняется по ступенчатому принципу, когда каждая последующая ступень имеет большую выдержку отключения по времени.


Токовая защита нулевой последовательности (ТЗНП) . При коротких замыканиях на землю применятся ТЗНП, которая использует факт появления в напряжениях и токах нулевой последовательности при таких КЗ в сетях, работающих в режиме глухозаземлённой нейтрали у трансформаторов.

Как известно, составляющие нулевой последовательности выделяются из фазных величин простой геометрической суммой векторов данных величин.

При этом, нулевой провод токовых цепей, которые собраны по схеме полной звезды – это не что иное, как фильтр токов нулевой последовательности. Поэтому ТЗНП выполняется на электромагнитных реле, включённых в нулевой провод.

Селективность на смежных ВЛ обеспечивается также как и у ДЗ, когда время действия защиты зависит от расстояния до места короткого замыкания, то есть, чем меньше ток срабатывания, тем дальше точка короткого, тем больше время срабатывания.

Для линий напряжением 110 кВ и выше должны быть предусмотрены устройства релейной защиты от многофазных замыканий и от замыканий на землю. Тип основной защиты линии определяют, исходя из требований сохранения устойчивости работы энергосистемы. Считается, что требования по устойчивой работе энергосистемы, как правило, удовлетворяются, если трехфазные КЗ на линиях, сопровождающиеся снижением напряжения на питающих шинах, ниже (0,6... ...0,7) Uном, отключаются без выдержки времени (при условии, что расчеты устойчивости не предъявляют других, более жестких требований). Кроме того, применение быстродействующей защиты может оказаться необходимым, когда повреждения, отключаемые с выдержкой времени, могут привести к нарушению работы ответственных потребителей или к недопустимому нагреву проводников, а также при необходимости осуществления быстродействующего АПВ.

На тупиковых линиях напряжением 110-220 кВ следует устанавливать ступенчатые токовые защиты или ступенчатые защиты тока и напряжения. Если такие защиты не удовлетворяют требованиям чувствительности или быстроты отключения повреждения, предусматривается ступенчатая дистанционная защита. В этом случае в качестве дополнительной защиты рекомендуется использовать мгновенную токовую отсечку.
Для защиты от замыканий на землю предусматривается ступенчатая токовая защита нулевой последовательности (направленная или ненаправленная).

Для защиты линий напряжением 110-220 кВ от КЗ на землю предусматриваются, как правило, ступенчатые токовые защиты нулевой последовательности. Реле тока всех ступеней защиты включаются на сумму трех фаз, что обеспечивает протекание по ним тока нулевой последовательности при однофазных КЗ на землю. Расчет ступенчатой токовой защиты нулевой последовательности сводится к определению тока срабатывания и выдержек времени отдельных ступеней защиты; необходимости использования в защите реле направления мощности; чувствительности защиты.

Рис. 1. Расчетные схемы для определения тока срабатывания защиты
нулевой последовательности тупиковой ВЛ 110-220 кВ по условиям 1 и 2: а - исходная; б - замещения - для определения эквивалентного сопротивления трансформаторов и линий при однофазном включении (одна из целей отключена); я1л1 -индуктивное сопротивление участка линии л1; хт1 и хт2 - индуктивные сопротивления трансформаторов тl и т2 при включении под напряжение одной фазы
На примере типичной для электроснабжения промышленных предприятий схемы (рис, 1, а) (тупиковая линия с односторонним питанием) рассмотрена методика выбора параметров срабатывания защиты линий, для которых длительный режим работы двумя фазами не предусматривается. Защита может быть выполнена одно- или двухступенчатой.

Учитывая наличие типовых панелей, на линиях, питающих подстанции с заземленной нейтралью, рекомендуется выполнение двухступенчатой защиты с направленной второй ступенью, что дает возможность повысить ее чувствительность и уменьшить время отключения КЗ. Ток срабатывания первой ступени защиты при выполнении ее без выдержки времени выбирают по следующим условиям.
1. Отстройка от броска тока намагничивания трансформаторов, имеющих глухозаземленные нейтрали и включаемых под напряжение при включении линии. Для выключателей с трехфазным приводом это условие при выборе параметров срабатывания защиты не учитывается. Нe учитывается оно также, если первая ступень защиты отстроена по времени от неодновременного включения фаз выключателя. При этом для выключателей с пофазными приводами время срабатывания первой ступени должно быть не менее 0,1-0,2 с (нижний предел - для воздушных выключателей, верхний - для масляных).
Подстанции промышленных предприятии выполняют, как правило, по упрощенным схемам с короткозамыкателями в цепи трансформаторов. При определении чувствительности защиты нулевой последовательности линий, к которой присоединены такие подстанции, следует учитывать уменьшение тока 3/0мин и мощности (3/03 £/„) мин из-за возможного одновременного трехфазного КЗ за трансформатором и однофазного КЗ на землю на высокой стороне трансформатора при включении короткозамыкателя.
Отношение токов нулевой последовательности в защите линии при замыкании на землю одной фазы на выводах высшего напряжения трансформатора с КЗ между тремя фазами на стороне низшего напряжения (режим 1,3) и при замыкании на землю одной фазы (режим 1) может быть определено по табл.

Токовая защита от междуфазных КЗ

Токовые ступенчатые защиты от междуфазных КЗ широко используют на тупиковых линиях 110-220 кВ. В качестве первой ступени, выполняемой, как правило, без выдержки времени, применяют токовую отсечку. Первичный ток срабатывания токовой отсечки, установленной на линии (рис., а) и выполняемой без выдержки времени, определяется следующими условиями:
Отстройка от тока, проходящего в месте установки защиты, при трехфазных КЗ за трансформаторами, питаемыми рассматриваемой линией. Отстройка по этому условию производится по выражению (11), где /£3)макс-наибольший ток в защите при трехфазном КЗ за трансформаторами в максимальном режиме системы и при минимальном сопротивлении трансформаторов с учетом РПН; kH~ 1,3...1,4. При наличии ответвительных подстанций с выключателями на стороне ВН токовая отсечка, защищающая линию, для обеспечения селективности должна быть отстроена от максимального тока КЗ на стороне ВН ближайшей подстанции с выключателями.
Отстройка от тока двигателей нагрузки при трехфазном КЗ на шинах подстанции, на которой установлена данная защита (точка К\ на рис. 37, а). Расчетным при этом является выражение (7.5), где /я,™ - максимальный ток, посылаемый двигателями нагрузки, питаемой от рассматриваемой линии, при трехфазном КЗ на шинах подстанций, к которым присоединена линия; kH - 1,3.,1,4,
Отстройка от тока самозапуска двигателей нагрузки, питаемой от рассматриваемой линии. Расчетным по этому условию является выражение (7.2).
Отстройка от бросков тока намагничивания трансформаторов, присоединенных к линии, при ее включении. Расчет производят для трех видов включения: одно- и двухфазного (одновременного включения двух фаз, затем с некоторым запаздыванием включения третьей фазы), а также трехфазного (одновременного включения всех трех фаз). Расчетное выражение имеет вид

где хг экв - эквивалентное сопротивление трансформаторов и линии до места установки защиты для расчетного вида включения. Определение лт экв выполняется аналогично выражению (15). При расчете по однофазному включению учитывают только трансформаторы с заземленной нейтралью, которые вводятся в схему замещения сопротивлениями ху, вычисляемыми по расчетным выражениям на с. 143. При расчете по двухфазному включению в схему замещения вводят сопротивлениями хф все трансформаторы, питаемые от рассматриваемой линии, независимо от режима заземления нейтрали. При расчете по трехфазному включению учитывают также все трансформаторы. При этом трансформаторы вводят в схему замещения сопротивлениями, значения которых равны 1,35* для трансформаторов и 1,3 для автотрансформаторов. Значение коэффициента Сб определяется по табл. 3.
3. Значение коэффициента Сб

Значение коэффициента Cg

Тип реле, используемого в защите

Расчетное включение

Сталь магнитопровода трансформаторов - холоднокатаная

Сталь магнитопроводов трансформаторов - горячекатаная

Uном = 110 кВ

Uном = 220 кВ

Uном = 110 кВ

Uном = 220 кВ

Одно- и трехфазное

Двухфазное

Одно- и трехфазное

Следует отметить, что при выборе тока срабатывания отсечки, защищающей линию, изображенную на рис., а, необходимо учитывать режим отключения одной из цепей и подключения всех трансформаторов к оставшейся в работе цепи.
Чувствительность токовой отсечки проверяют в минимальном режиме питающей системы при двухфазном КЗ на шинах подстанций, присоединенных к защищаемой линии. Минимальный коэффициент чувствительности токовой отсечки, когда она выполняет функции
основной защиты, должен быть порядка 1,5. Если токовая отсечка без выдержки времени выполняет функции дополнительной защиты линии, то коэффициент чувствительности должен быть около 1,2 при КЗ в месте установки защиты в наиболее благоприятном по условию чувствительности режиме. В тех случаях, когда простые токовые отсечки не удовлетворяют требованиям чувствительности, может оказаться целесообразным применение комбинированной отсечки по току и напряжению.
Ток срабатывания комбинированной отсечки выбирается из условия обеспечения достаточной чувствительности при двухфазном металлическом КЗ в конце защищаемой зоны в минимальном режиме питающей системы:

где k4 у-коэффициент чувствительности отсечки по току (k4 т = 1,5).
Кроме условия (7,17) /с 0 к должен удовлетворять условию надежной отстройки от токов самозапуска в режиме АПВ в случае неисправностей в цепях напряжения (расчетное выражение (2)). Первичное напряжение срабатывании реле напряжения выбирают по условию отстройки от КЗ на шинах низшего (среднего) напряжения той подстанции, у которой при повреждении за трансформатором, сопровождающимся током, равным /с 0 к, остаточное напряжение в месте установки защиты будет наименьшим:

где гл - сопротивление участка линии от шин питающей подстанции, на которой установлена рассматриваемая защита, до шин ВН подстанции, повреждение за трансформатором которой является расчетным; гт - наименьшее (с учетом РПН) сопротивление трансформатора, повреждение за которым является расчетным; kn- 1,2- коэффициент надежности.
Напряжение срабатывания комбинированной отсечки должно находиться в пределах (0,15...0,65) Uном, что определяется минимальной уставкой стандартных реле напряжения (нижний предел) и условием обеспечения отстройки от возможного снижения напряжения в сети (верхний предел).
Чувствительность комбинированной отсечки по напряжению проверяется по остаточному напряжению Uocr в месте установки защиты при междуфазных напряжениях в конце защищаемой линии в максимальном режиме работа системы:

Коэффициент чувствительности комбинированной отсечки по напряжению должен быть не менее 1,5.
Максимальная токовая защита с выдержкой времени используется, как правило, в качестве второй ступени защиты тупиковых линий напряжением 110-220 кВ. Расчетные выражения для расчета максимальной токовой защиты линий напряжением 6-10 кВ, справедливы и для линий напряжением 110-220 кВ.
Для повышения чувствительности защиту можно выполнить с пуском по напряжению.

Дистанционная защита

Расчет защиты сводится к определению сопротивлений срабатывания и выдержек времени отдельных ступеней, а также ее чувствительности. Для защиты тупиковых линий напряжением 110-220 кВ дистанционную защиту выполняют двухступенчатой при использовании панели ЭПЭ-1636 или одноступенчатой - при использовании панели упрощенных защит.
Сопротивление срабатывания первой ступени защиты выбирают по условию отстройки от КЗ за трансформаторами, которые питаются от рассматриваемой линии. Для защиты линии, изображенной на рис, а, расчетные выражения имеют вид

где гл1 и гл2 - сопротивления участков линии; гт1 и гт3 - минимальные значения сопротивлений трансформаторов Т1 и ТЗ с учетом РПН (если на подстанциях установлены разные трансформаторы, то в выражениях (18) и (19) учитываются трансформаторы, имеющие меньшие сопротивления); kT Tl, кгт3- коэффициенты токораспределения, равные отношениям тока в месте установки защиты и соответственно токов в трансформаторах Т1, ТЗ и на участке линии Л2 при КЗ за трансформаторами. Если на стороне ВН ответвительных подстанций имеются выключатели, то первая ступень защиты для обеспечения селективности отстраивается от сопротивления участка линии до ближайшей подстанции с выключателями.
Очевидно, что расчетными при определении г\ 3 следует принимать режимы, соответствующие максимальным значениям коэффициентов токораспределения. При отсутствии питания со стороны низшего (среднего) напряжения трансформаторов /гт т1 = kr r3 = = 1. В качестве сопротивления срабатывания первой ступени дистанционной защиты принимается меньшее из значений, полученных по формулам (18) и (19).
Выбранное сопротивление срабатывания проверяют по условию отстройки от броска тока намагничивания трансформаторов при включении линии под напряжение по выражению

(обозначения - см. выражение (14)). Значение коэффициента Сб принимается по работе и данным завода-изготовителя.
Первичное сопротивление срабатывания второй ступени защиты (пусковой орган) выбирают по условию отстройки от минимального сопротивления в условиях самозапуска электродвигателей нагрузки после отключения внешнего КЗ:

где UUKa сз - минимальное значение первичного напряжений в месте установки защиты в условиях самозапуска электродвигателей, определяемое расчетом (ориентировочно можно принять равным 80-90 % минимального рабочего напряжения сети); kB = 1,05 ... 1,1-коэффициент возврата реле; kH = 1,2 - коэффициент надежности; kC3 - коэффициент самозапуска двигателей в режиме после отключения внешнего КЗ, определяемый расчетом (ориентировочно kC3 = 1,5 . . . 2); /раб мжс - максимальное значение рабочего тока защищаемой линии; <рм_ ч - угол макси- мальвой чувствительности реле сопротивления", <рраб- угол полного сопротивления нагрузки в рассматриваемом режиме после отключения внешнего КЗ.
При выборе параметров срабатывания пусковых органов дистанционной защиты линий с ответвлениями, кроме того, следует учитывать также условие отстройки от режима самозапуска нагрузки подстанций, питающихся от рассматриваемой линии, при включении линии. Сопротивление срабатывания по указанному условию определяют по выражению 7.20, При этом коэффициент kB не учитывают, a kC3 и фраб определяют в режиме самозапуска заторможенной нагрузки при включении линии.

Сопротивления срабатывания реле первой и второй ступеней за- щиты определяют по выражениям
где пт и пк -коэффициенты трансформации соответственно трансформаторов тока и напряжения; £сх- коэффициент схемы включения реле.
По найденным значениям сопротивлений срабатывания выбирают каталожные уставки реле. Коэффициент чувствительности защиты определяют по выражению k4 = г® /2защ, где гзащ - максимальное значение сопротивления, подведенное к защите при КЗ в расчетной точке. Для проверки чувствительности защиты расчетной является точка, характеризующаяся наибольшим значением гзащ, для рассматриваемой на рис. 37, а линии - точка К2:

где kт2 - коэффициент токораспределения, соответствующий режиму, при котором он принимает минимальное значение. Для повышения коэффициента чувствительности защиты можно использовать эллиптическую характеристику пускового органа. Использование эллиптической характеристики реле пускового органа позволяет зачастую обеспечить надежное резервирование защит трансформаторов приемных подстанций. Наименьший допустимый коэффициент чувствительности защиты приблизительно равен 1,5.
Выбранные уставки реле должны быть проверены на чувствительность по току точной работы /тр (приводятся в каталожных данных защиты в зависимости от уставки реле защиты). Чувствительность реле по току точной работы оценивают коэффициентом чувствительности при КЗ в расчетной точке.

Сети напряжением 110 -220кВ работают в режиме с эффективно или глухозаземленной нейтралью. Поэтому замыкание на землю в таких сетях является коротким замыканием с током, иногда превышающим ток трехфазного КЗ, и подлежит отключению с минимально возможной выдержкой времени.

Воздушные и смешанные (кабельно-воздушные) линии оснащаются устройствами АПВ. В ряде случаев, если применяемый выключатель выполнен с пофазным управлением, применяется пофазное отключение и АПВ. Это позволяет отключить и включить поврежденную фазу без отключения нагрузки. Так как в таких сетях нейтраль питающего трансформатора заземлена, нагрузка практически не ощущает кратковременной работы в неполнофазном режиме.

На чисто кабельных линиях АПВ, как правило, не применяется.

Линии высокого напряжения работают с большими токами нагрузки, что требует применения защит со специальными характеристиками. На транзитных линиях, которые могут перегружаться, как правило, применяются дистанционные защиты, позволяющие эффективно отстроится от токов нагрузки. На тупиковых линиях во многих случаях можно обойтись токовыми защитами. Как правило, не допускается, чтобы защиты срабатывали при перегрузках. Защита от перегрузки, при необходимости, выполняется на специальных устройствах.

Согласно ПУЭ, устройства предотвращения перегрузки должны применяться в случаях, если допустимая для оборудования длительность протекания тока составляет менее 1020 мин. Защита от перегрузки должна действовать на разгрузку оборудования, разрыв транзита, отключение нагрузки, и только в последнюю очередь на отключение перегрузившегося оборудования.

Линии высокого напряжения, как правило, имеют значительную длину, что усложняет поиск места повреждения. Поэтому, линии должны оснащаться устройствами, определяющими расстояние до места повреждения. Согласно директивным материалам СНГ, средствами ОМП должны оснащаться линии длиной 20 км и более.

Задержка в отключении короткого замыкания может привести к нарушению устойчивости параллельной работы электростанций, из-за длительной посадки напряжения может остановиться оборудование и нарушиться технологический процесс производства, могут произойти дополнительные повреждения линии, на которой возникло короткое замыкание. Поэтому, на таких линиях очень часто применяются защиты, которые отключают короткие замыкания в любой точке без выдержки времени. Это могут быть дифференциальные защиты, установленные по концам линии и связанные высокочастотным, проводниковым или оптическим каналом. Это могут быть обычные защиты, ускоряемые при получении разрешающего, или снятии блокирующего сигнала с противоположной стороны.

Токовые и дистанционные защиты, как правило, выполняются ступенчатыми. Количество ступеней не менее 3, в ряде случаев бывает необходимо 4, или даже 5 ступеней.

Во многих случаях, все требуемые защиты можно выполнить на базе одного устройства. Однако выход со строя этого одного устройства оставляет оборудование без защиты, что недопустимо. Поэтому защиты линий высокого напряжения целесообразно выполнять из 2 комплектов. Второй комплект является резервным и может быть упрощен по сравнению с основным: не иметь АПВ, ОМП, иметь меньшее количество ступеней и т.д. Второй комплект должен питаться от другого автомата оперативного тока и комплекта трансформаторов тока. По возможности, питаться от другой аккумуляторной батареи и трансформатора напряжения, действовать на отдельный соленоид отключения выключателя.

Устройства защиты высоковольтных линий должны учитывать возможность отказа выключателя и иметь УРОВ, либо встроенное в само устройство, либо организованное отдельно.

Для анализа аварии и работы релейной защиты и автоматики требуется регистрация как аналоговых величин, так и дискретных сигналов при аварийных событиях.

Таким образом, для высоковольтных линий комплекты защиты и автоматики должны выполнять следующие функции:

Защиту от междуфазных коротких замыканий и коротких замыканий на землю.

Пофазное или трехфазное АПВ.

Защиту от перегрузки.

УРОВ.

Определение места повреждения.

Осциллографирование токов и напряжений, а также регистрация дискретных сигналов защиты и автоматики.

Устройства защиты должны резервироваться или дублироваться.

Для линий, имеющих выключатели с пофазным управлением, необходимо иметь защиту от неполнофазного режима, действующую на отключение своего и смежных выключателей, так как длительный неполнофазный режим в сетях СНГ не допускается.

7.2. ОСОБЕННОСТИ РАСЧЕТА ТОКОВ И НАПРЯЖЕНИЙ ПРИ КОРОТКОМ ЗАМЫКАНИИ

Как указывалось в гл. 1, в сетях с заземленной нейтралью необходимо учитывать дополнительно два вида короткого замыкания: однофазного и двухфазного замыкания на землю.

Расчеты токов и напряжений при коротких замыканиях на землю ведутся методом симметричных составляющих см. гл. 1. Это важно, в том числе, и потому, что защиты используют симметричные составляющие, которые в симметричных режимах отсутствуют. Использование токов обратной и нулевой последовательности позволяет не отстраивать защиту от тока нагрузки, и иметь уставку по току меньшую тока нагрузки. Например, для защиты от замыканий на землю, главным образом используется токовая защита нулевой последовательности, включаемая в нулевой провод соединенных в звезду трех трансформаторов тока.

При использовании метода симметричных составляющих, схема замещения для каждой из них составляется отдельно, затем они соединяются вместе по месту КЗ. Например, составим схему замещения для схемы рис 7.1.

X1 сист. =15 Ом

X0 сист. =25 Ом

Л1 25км АС-120

Л2 35 км АС-95

Т1 – 10000/110

UK = 10,5 Т2 – 16000/110 UK = 10,5

Рис. 7.1 Пример сети для составления схемы замещения в симметричных составляющих

При расчете параметров линии 110 кВ и выше для схемы замещения, обычно пренебрегают активным сопротивлением линии. Индуктивное сопротивление прямой последовательности (Х 1 ) линии по справочным данным равно: АС-95 – 0,429 Ом на км, АС-120 – 0,423 ом на км. Сопротивление нулевой последовательности для линии со стальными торсами тро-

сами равно 3 Х 1 т.е. соответственно 0,429 3 =1,287 и 0,423 3=1,269.

Определим параметры линии:

Л 1 = 25 0, 423 = 10, 6 Ом;

Л 1 = 25 1, 269 = 31, 7 Ом

Л 2 = 35 0, 423 = 15, 02 Ом;

Л 2 = 35 1, 269 = 45, 05 Ом

Определим параметры трансформатора:

Т1 10000кВА.

X 1 T 1 = 0, 105 1152 10 = 138 Ом;

X 1 T 2 = 0, 105 1152 16 = 86, 8 Ом; X 0 T 2 = 86, 8 Ом

Сопротивление обратной последовательности в схеме замещения равно сопротивлению прямой последовательности.

Сопротивление нулевой последовательности трансформаторов обычно принимается равным сопротивлению прямой последовательности. Х 1 Т = Х 0 Т . Трансформатор Т1 не входит в схему замещения нулевой последовательности, так как его нейтраль разземлена.

Составляем схему замещения.

X1C =X2C =15 Ом

X1Л1 =X2Л1 =10,6 Ом

X1Л2 =X2Л1 =15,1 Ом

X0C =25 Ом

X0Л1 =31,7 Ом

X0Л2 =45,05 Ом

X1Т1 =138 Ом

X1Т2 =86,8 Ом

X0Т2 =86,8 Ом

Расчет трехфазных и двухфазных КЗ производится обычным путем, см. таблицу 7.1. Таблица 7.1

сопротивление до мес-

КЗ трехфазный

КЗ двухфазный

та КЗ X 1 ∑ = ∑ X 1

= (115 3) X 1

0, 87 I

15+10,6 = 25,6 Ом

25,6+15,1 =40,7 Ом

25,6+ 138=163,6 Ом

40,7+86.8 =127,5 Ом

Для расчета токов замыкания на землю необходимо использовать метод симметричных составляющих.Согласно этому методу, эквивалентные сопротивления прямой, обратной и нулевой последовательности вычисляются относительно точки КЗ и включаются последовательно в схеме замещения для однофазных КЗ на землю рис.7.2, а и последовательно/параллельно для двухфазных на землю рис.7.2, б .

X 1Э

X 2Э

X 0Э

X 1Э

X 2Э

X 0Э I 0

I 0б

Рис. 7.2. Схема включения эквивалентных сопротивлений прямой, обратной и нулевой последовательности для расчета токов короткого замыкания на землю:

а) – однофазного; б) – двухфазного; в) – распределение токов нулевой последовательности между двумя точками заземления нейтрали.

Выполним расчет КЗ на землю см. таблицы 7.2, 7.3.

Схема прямой и обратной последовательности состоит из одной ветви: от источника питания до места короткого замыкания. В схеме нулевой последовательности 2 ветви от заземленных нейтралей, которые являются источниками тока КЗ и должны в схеме замещения соединяться параллельно. Сопротивление параллельно соединенных ветвей определяется по формуле:

X 3 = (X a X б ) (X а + X б )

Токораспределение по параллельным ветвям определяется по формулам:

I a = I Э X Э X а ; I в = I Э X Э

Таблица 7.2 Токи однофазного КЗ

Х1 Э

Х2 Э

Х0 Э = Х0 а //Х0 б *

ХЭ

Iкз1

Iкз2

Iкз0

Iкз0 а *

Iкз0 б

I КЗ

I1 +I2 +I0

* Примечание . Определяется сопротивление параллельно соединенных двух участков схемы нулевой последовательности по формуле 7.1.

** Примечание . Распределяется ток между двумя участками нулевой последовательности по формуле 7.2.

Таблица 7.3 Токи двухфазного КЗ на землю

Х1 Э

Х2 Э

Х0 Э *

Х0-2 Э ** =

ХЭ

I КЗ1

I КЗ 2 ***

I КЗ0

I КЗ 0 а ****

I КЗ0 б

IКЗ *****≈

Х0 Э //Х2

I1 +½ (I2 +I0 )

*Примечание. Определяется сопротивление параллельно соединенных двух участков схемы нулевой последовательности по формуле 7.1, расчет выполнен в таблице 7.2.

**Примечание. Определяется сопротивление параллельно соединенных двух сопротивлений обратной и нулевой последовательности по формуле 7.1.

***Примечание. Распределяется ток между двумя сопротивлениями обратной и нулевой последовательности по формуле 7.2.

****Примечание. Распределяется ток между двумя участками нулевой последовательности по формуле 7.2.

*****Примечание. Ток двухфазного КЗ на землю указан по приближенной формуле, точное значение определяется геометрическим путем см. ниже.

Определение фазных токов после расчета симметричных составляющих

При однофазном КЗ весь ток КЗ протекает в поврежденной фазе, в остальных фазах ток не протекает. Токи всех последовательностей равны между собой.

Для соблюдения таких условий симметричные составляющие располагаются следующим образом (рис.7.3):

Ia 1

Ia 2

I a 0 I b 0 I c 0

Ia 0

Ia 2

Ib 1

Ic 2

Ia 1

Ic 1

Ib 2

Токи прямой

Токи обратной

Токи нулевой

Ic 1

Ib 1

Ic 0

Ib 0

последоват.

последоват.

последоват.

Ic 2

Ib 2

Рис.7.3. Векторные диаграммы для симметричных составляющих при однофазном КЗ

При однофазном КЗ токи I1 = I2 = I0 . В поврежденной фазе они равны по величине и совпадают по фазе. В неповрежденных фазах равные токи всех последовательностей образуют равносторонний треугольник и результирующая сумма всех токов равна 0.

При двухфазном коротком замыкании на землю ток в одной неповрежденной фазе равен нулю. Ток прямой последовательности равен сумме токов нулевой и обратной последовательности с обратным знаком. Исходя из таких положений, строим токи симметричных составляющих (рис. 7.4):

Ia 1

Ia 1

Ia 2

Iс 2

Ib 2

Ia 0

I a 0 I b 0 I c 0

Iс 2

Ib 2

Iс 1

Ib 1

Ia 2

Ic 0

Iс 1

Ib 1

Ib 0

Рис. 7.4 Векторные диаграммы симметричных составляющих токов двухфазного КЗ на землю

Из построенной диаграммы видно, что фазные токи при замыканиях на землю построить довольно сложно, так как угол фазного тока отличается от угла симметричных составляющих. Его следует строить графически или использовать ортогональные проекции. Однако с достаточной для практики точностью величину тока можно определить по упрощенной формуле:

I ф = I 1 + 1 2 (I 2 + I 0 ) = 1,5 I 1

Токи в таблице 7.3 подсчитаны по этой формуле.

Если сравнить токи двухфазного КЗ на землю по таблице 7.3 с током двухфазного и трехфазного КЗ по таблице 7.1, можно сделать вывод, что токи двухфазного КЗ несколько ниже тока двухфазного КЗ на землю, поэтому чувствительность защиты следует определять по току двухфазного КЗ. Токи трехфазного КЗ соответственно выше тока двухфазного КЗ на

землю, поэтому определение максимального тока КЗ для отстройки защиты производится по трехфазному КЗ. Это значит, что для расчетов защиты не нужен ток двухфазного КЗ на землю, и его считать незачем. Ситуация несколько изменяется при расчете токов короткого замыкания на шинах мощных электростанций, где сопротивление обратной и нулевой последовательности меньше сопротивления прямой. Но к распредсетям это не имеет отношения, а для электростанций токи считаются на ЭВМ по специальной программе.

7.3 ПРИМЕРЫ ВЫБОРА АППАРАТУРЫ ДЛЯ ТУПИКОВЫХ ВЛ 110-220 КВ

Схема 7.1. Тупиковая воздушная линия 110–220 кВ. Со стороны ПС1 и ПС2 питание отсутствует. Т1 ПС1 включен через отделитель и короткозамыкатель. Т1 ПС2 включен через выключатель. Нейтраль стороны ВН Т1 ПС2 заземлена, на ПС1 – изолирована. Минимальные требования к защите:

Вариант 1 . Должна быть применена трехступенчатая защита от междуфазных коротких замыканий (первая ступень, без выдержки времени, отстроена от КЗ на шинах ВН ПС2, вторая, с малой выдержкой времени, от КЗ на шинах НН ПС1 и ПС2, третья ступень – максимальная защита). Защиты от замыканий на землю – 2 ступени (первая ступень, без выдержки времени отстроена от тока, посылаемого на шины заземленным трансформатором ПС2, вторая ступень с выдержкой времени, обеспечивающей ее согласование с защитами внешней сети, но не отстроенная от тока КЗ, посылаемого трансформатором ПС2). Должно быть применено двух или однократное АПВ. Чувствительные ступени должны ускоряться при АПВ. Защиты пускают УРОВ питающей подстанции. К дополнительным требованиям можно отнести защиту от обрыва фаз, определение места повреждения на ВЛ, контроль ресурса выключателя.

Вариант 2 . В отличие от первого защита от замыканий на землю выполнена направленной, что позволяет не отстраивать ее от обратного тока КЗ и, таким образом, выполнить более чувствительную защиту без выдержки времени. Таким образом, удается защитить всю линию без выдержки времени.

Примечание . В этом и последующих примерах не даются точные рекомендации по выбору уставок защиты, упоминания о настройке защит используются для обоснования выбора типов защиты. В реальных условиях может быть применена другая настройка защит, что и требуется определить при конкретном проектировании. Защиты могут быть заменены устройствами защиты других типов, имеющих подходящие характеристики.

Набор защит, как уже было сказано, должен состоять из 2 комплектов. Защита может быть реализована на 2х устройствах выбранных из:

MiCOM Р121, Р122, Р123, P126, Р127 фирмы ALSTOM,

F 60, F650 фирмы GE

двух реле REF 543 фирмы АВВ – подбирается 2-е подходящие модификации,

7SJ 511, 512, 531, 551 SIEMENS– подбирается 2-е подходящие модификации,

двух реле SEL 551 фирмы SEL.

Схема 7.2. Разомкнутый транзит на подстанции 3.

Двухцепная воздушная линия заходит на подстанцию 2, секции которой работают параллельно. Предусматривается возможность переноса разреза на ПС2 в ремонтном режиме.

В этом случае включается секционный выключатель на ПС3. Транзит замыкается только на время переключения и, при выборе защит, его замыкание не учитывается. На 1 секции ПС3 включен трансформатор с заземленной нейтралью. Источника тока для однофазного КЗ на подстанциях 2 и 3 нет. Поэтому защита на стороне без питания работает только в «каскаде», после отключения линии со стороны питания. Несмотря на отсутствие питания с противоположной стороны защита должна быть выполнена направленной как при замыканиях на землю, так и при междуфазных коротких замыканиях. Это позволяет на приемной стороне правильно определить поврежденную линию.

В общем случае для того, чтобы обеспечить селективную защиту с небольшими выдержками времени, особенно на коротких линиях, необходимо применить четырехступенчатую защиту, уставки которой выбираются следующим образом: 1 ступень отстраивается от КЗ

в конце линии, 2 ступень согласовывается с первой ступенью параллельной линии в каскаде и первой ступенью смежной линии, 3 ступень согласовывается со вторыми ступенями этих ВЛ. При согласовании защит со смежной линией учитывается режим одна с двумя: на первом участке - 1 ВЛ, на втором участке – 2, что существенно загрубляет защиту. Эти три ступени защищают линию, а последняя, 4 ступень резервирует смежный участок. При согласовании защит по времени учитывается время действия УРОВ, что увеличивает выдержки времени согласуемых защит на время действия УРОВ. При выборе уставок защиты по току, они должны быть отстроены от суммарной нагрузки двух линий, так как одна из параллельных ВЛ может отключиться в любой момент, и вся нагрузка будет подключена к одной ВЛ.

В составе устройств защиты оба комплекта защит должны быть направленными. Можно применить следующие варианты защит:

MiCOM, Р127 и Р142 фирмы ALSTOM,

F60 и F650 фирмы GE,

два реле REF 543 фирмы АВВ – подбирается направленные модификации,

реле 7SJ512 и 7SJ 531 фирмы SIEMENS,

два реле SEL 351 фирмы SEL.

В ряде случаев, из соображений обеспечения чувствительности, отстройки от токов нагрузки или обеспечения селективной работы, может потребоваться применение дистанци-

Z = L Z

онной защиты. Для этой цели одна из защит заменяется на дистанционную. Может быть применена дистанционная защита:

MiCOM P433, Р439, P441 фирмы ALSTOM,

D30 фирмы GE,

REL 511 фирмы АВВ – подбирается направленные модификации,

реле 7SA 511 или 7SА 513 фирмы SIEMENS,

реле SEL 311 фирмы SEL.

7.4. ДИСТАНЦИОННЫЕ ЗАЩИТЫ

Назначение и принцип действия

Дистанционные защиты - это сложные направленные или ненаправленные защиты с относительной селективностью, выполненные с использованием минимальных реле сопротивления, реагирующих на сопротивление линии до места КЗ, которое пропорционально расстоянию, т.е. дистанции. Отсюда и происходит название дистанционной защиты (ДЗ). Дистанционные защиты реагируют на междуфазные КЗ (кроме микропроцессорных ДЗ). Для правильной работы дистанционной защиты необходимо наличие цепей тока от ТТ присоединения и цепей напряжения от ТН. При отсутствии или неисправности цепей напряжения возможна излишняя работа ДЗ при КЗ на смежных участках.

В сетях сложной конфигурации с несколькими источниками питания простые и направленные МТЗ (НТЗ) не могут обеспечить селективного отключения КЗ. Так, например, при КЗ на W 2 (рис. 7.5) НТЗ 3 должна подействовать быстрее РЗ I, а при КЗ на W 1 , наоборот, НТЗ 1 должна подействовать быстрее РЗ 3. Эти противоречивые требования не могут быть выполнены с помощью НТЗ. Кроме того, МТЗ и НТЗ часто не удовлетворяют требованиям быстродействия и чувствительности. Селективное отключение КЗ в сложных кольцевых сетях может быть обеспечено с помощью дистанционной РЗ (ДЗ).

Выдержка времени ДЗ t 3 зависит от расстояния (дистанции) t 3 = f (L PK ) (рис. 7.5) между

местом установки РЗ (точка Р) и точкой КЗ (К), т. е. L PK , и нарастает с увеличением это-

го расстояния. Ближайшая к месту повреждения ДЗ имеет меньшую выдержку времени, чем более удаленные ДЗ.

Например, при КЗ в точке К1 (рис. 7.6) Д32, расположенная ближе к месту повреждения, работает с меньшей выдержкой времени, чем более удаленная Д31. Если же КЗ возникает и в точке К2, то время действия Д32 увеличивается, и КЗ селективно отключается ближайшей к месту повреждения ДЗЗ.

Основным элементом ДЗ является дистанционный измерительный орган (ДО), определяющий удаленность КЗ от места установки РЗ. В качестве ДО используются реле сопротивления (PC), реагирующие на полное, реактивное или активное сопротивление поврежденного участка ЛЭП (Z , X , R ).

Сопротивление фазы ЛЭП от места установки реле Р до места КЗ (точки К) пропорционально длине этого участка, так как величина сопротивления до места КЗ равна длине

участка умноженному на удельное сопротивление линии: уд . .

Таким образом, поведение дистанционного органа, реагирующего на сопротивление линии, зависит от расстояния до места повреждения. В зависимости от вида сопротивления, на которое реагирует ДО (Z , X или R ), ДЗ подразделяются на РЗ полного, реактивного и активного сопротивлений. Реле сопротивления, применяемые в ДЗ для определения со-

противления Z PK до точки КЗ, контролируют напряжение и ток в месте установки ДЗ (рис. 7.7.).

– дистанционная защита

К зажимам PC подводятся вторичные значения U P и I P от ТН и ТТ. Реле выполняется так, чтобы его поведение в общем случае зависело от отношения U P к I P . Это отношение является некоторым сопротивлением Z P . При КЗ Z P = Z PK , и при определенных значениях Z PK , PC срабатывает; оно реагирует на уменьшение Z P , поскольку при КЗ U P умень-

шается, а I P возрастает. Наибольшее значение, при котором PC срабатывает, называется сопротивлением срабатывания реле Z cp .

Z p = U p I p ≤ Z cp

Для обеспечения селективности в сетях сложной конфигурации на ЛЭП с двухсторонним питанием ДЗ необходимо выполнять направленными, действующими при направлении мощности КЗ от шин в ЛЭП. Направленность действия ДЗ обеспечивается при помощи дополнительных РНМ или применением направленных PC, способных реагировать и на направление мощности КЗ.

Характеристики зависимости време-

Рис. 7.7. Подключение цепей тока и на-

ни дистанционных защит t = f (L

пряжения реле сопротивления

а – наклонная;б – ступенчатая;в – комбинированная

Характеристики выдержки времени

дистанционных защит

Зависимость времени действия ДЗ от расстояния или сопротивления до места КЗ t 3 = f (L PK ) или t 3 = f (Z PK ) называется характеристикой выдержки времени ДЗ. По ха-

рактеру этой зависимости ДЗ делятся на три группы: с нарастающими (наклонными) характеристиками времени действия, ступенчатыми и комбинированными характеристиками

(рис. 7.8). Ступенчатые ДЗ действуют быстрее, чем ДЗ с наклонной и комбинированной характеристиками и, как правило, получаются проще в конструктивном исполнении. ДЗ со ступенчатой характеристикой производства ЧЭАЗ выполнялись обычно с тремя ступенями времени, соответствующими трем зонам действия ДЗ (рис. 7.8, б ). Современные микропроцессорные защиты имеют 4, 5 или 6 ступеней защиты. Реле с наклонной характеристикой разрабатывались специально для распределительных сетей (например ДЗ-10).

Принципы выполнения селективной защиты сети с помощью устройств дистанционной защиты

На ЛЭП с двухсторонним питанием ДЗ устанавливаются с обеих сторон каждой ЛЭП и должны действовать при направлении мощности от шин в ЛЭП. Дистанционные РЗ, действующие при одном направлении мощности, необходимо согласовать между собой по времени и по зоне действия так, чтобы обеспечивалось селективное отключение КЗ. В рассматриваемой схеме (рис. 7.9.) согласуются между собой Д31, ДЗЗ, Д35 и Д36, Д34, Д32.

С учетом того, что первые ступени ДЗ не имеют выдержки времени (t I = 0 ), по условию селективности они не должны действовать за пределами защищаемой ЛЭП. Исходя из этого протяженность первой ступени, не имеющей выдержки времени (t I = 0 ), берется меньше протяженности защищаемой ЛЭП и обычно составляет 0,8–0,9 длины ЛЭП. Остальная часть защищаемой ЛЭП и шины противоположной подстанции охватываются второй ступенью ДЗ этой ЛЭП. Протяженность и выдержка времени второй ступени согласуются (обычно) с протяженностью и выдержкой первой ступени ДЗ следующего участка. Например, у второй сту-

Рис.7.9 Согласование выдержек времени дистанционных РЗ со ступенчатой характеристикой:

∆ z – погрешность дистанционного реле; ∆ t – ступень селективности

Последняя третья ступень ДЗ является резервной, ее протяженность выбирается из условия охвата следующего участка, на случай отказа его РЗ или выключателя. Выдержка вре-

мени принимается на ∆ t больше времени действия второй или третьей зоны ДЗ следующего участка. При этом зона действия третьей ступени должна быть отстроена от конца второй или третьей зоны следующего участка.

Структура защиты линии с использованием дистанционной защиты

В отечественных энергосистемах ДЗ применяется для действия при междуфазных КЗ, а для действия при однофазных КЗ используется более простая ступенчатая МТЗ нулевой последовательности (НП). Большинство микропроцессорной аппаратуры имеет дистанционную защиту, действующую при всех видах повреждения, в том числе и при замыканиях на землю. Реле сопротивления (РС) включается через ТН и ТТ на первичные напряжения в

начале защищаемой ЛЭП. Вторичное напряжение на зажимах PC: U p = U pn K II , а вторичныйток: I p = I pn K I .

Сопротивление на входных зажимах реле определяется по выражению.



Загрузка...
Top