Проектирование структурной схемы вычислительной сети. Логическая, структурная схемы сети Структурная схема сети

Структурная схема системы мобильной связи стандарта GSM пред­ставлена на рисунке 3.1. Сеть GSM делится на две системы: система коммутации (SSS) и система базовых станций (BSS). В стандарте GSM функциональное сопряжение элементов системы осуществляется посредством интерфейсов, а все сетевые компоненты взаимодействуют в соответствии с системой сигнализации МККТТ SS № 7 (CCITT SS № 7).

Центр коммутации мобильной связи MSC обслуживает группу сот и обеспечивает все виды соединений, в которых нуждается в процессе работы мобильная станция. MSC аналогичен коммутационной станции и представляет собой интерфейс между фиксированными сетями (PSTN, PDN, ISDN и т. д.) и системой мобильной связи. Он обеспечивает мар­шрутизацию вызовов и функции управления вызовами. Кроме выполне­ния функций обычной коммутационной станции, на MSC возлагаются функции коммутации радиоканалов. К ним относятся «эстафетная пере­дача», в процессе которой достигается непрерывность связи при переме­щении мобильной станции из соты в соту и переключение рабочих кана­лов в соте при появлении помех или при неисправностях.

Рисунок 3.1 - Структурная схема системы мобильной связи стандарта GSM

На данной схеме обозначены: MS – мобильная станция; BTS – приемно-передающие базовые станции; BSC – контроллер базовой станции; TCE – транскодер; BSS – оборудование базовой станции; MSC – центр коммутации мобильной связи; HLR – регистр положения; VLR – регистр перемещения; AUC – центр аутентификации; EIR – регистр идентификации оборудования; OMC – центр эксплуатации и технического обслуживания; NMC-центр управления сетью.

MSC обеспечивает обслуживание мобильных абонентов, располо­женных в пределах определенной географической зоны.

MSC управляет процедурами установления вызова и маршрутизации, накапливает данные о состоявшихся разговорах, необходимые для вы­писки счетов за предоставленные сетью услуги.

MSC поддерживает процедуры безопасности, применяемые для управления доступом к радиоканалам. MSC управляет процедурами ре­гистрации местоположения для обеспечения доставки вызова переме­щающимся мобильным абонентам от абонентов телефонной сети общего пользования и обеспечения ведения разговора при перемещении мобиль­ной станции из одной зоны обслуживания в другую. В стандарте GSM также предусмотрены процедуры передачи вызова между сетями (кон­троллерами), относящимися к разным MCS.



MSC формирует данные, необходимые для выписки счетов за предоставленные сетью услуги связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети.

MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

Центр коммутации осуществляет постоянное слежение за мобильными станциями, используя регистры положения (HLR) и перемещения (VLR).

Регистр положения HLR представляет собой базу данных о посто­янно прописанных в сети абонентах. Информация об абоненте заносится в HLR в момент регистрации абонента и хранится до тех пор, пока абонент не прекратит пользоваться данной системой связи и не будет удалён из регистра HLR.

В базе данных содержатся опознавательные номера и адреса, параметры подлинности абонентов, состав услуг связи, информация о маршрутизации, регистрируются данные о роуминге або­нента, включая данные о временном идентификационном номере мо­бильного абонента (TMSI) и соответствующем VLR. Долговременные данные, хранящиеся в регистре положения HLR приведены в таблице 3.3.

К данным, содержащимся в HLR, имеют дистанционный доступ все MSC- и VLR-сети, в том числе относящиеся к другим сетям при обеспе­чении межсетевого роуминга абонентов. Если в сети несколько HLR, ка­ждый HLR представляет собой определенную часть общей базы данных сети об абонентах. Доступ к базе данных об абонентах осуществляется по номеру IMSI или MS ISDN (номеру мобильного абонента в сети ISDN).

HLR может быть выполнен как в собственном узле сети, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. В случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

Таблица 3.3 – Долговременные данные, хранящиеся в регистре HLR

Состав долговременных данных, хранящихся в HLR
IMS1 - международный идентификационный номер подвижного абонента
Номер подвижной станции в международной сети ISDN
Категория подвижной станции
Ключ аутентификации
Виды обеспечения вспомогательными службами
Индекс закрытой группы пользователей
Код блокировки закрытой группы пользователей
Состав основных вызовов, которые могут быть переданы
Оповещение вызывающего абонента
Идентификация номера вызываемого абонента
График работы
Оповещение вызываемого абонента
Контроль сигнализации при соединении абонентов
Свойства (средства) закрытой группы пользователей
Льготы закрытой группы пользователей
Запрещенные исходящие вызовы в закрытой группе пользователей
Максимальное количество абонентов
Используемые пароли
Класс приоритетного доступа
Запрещенные входящие вызовы в закрытой группе абонентов

Регистр перемещения VLR также предназначен для контроля пере­движения мобильной станции из одной зоны в другую. База данных VLR содержит информацию обо всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Он обеспечивает функционирование мобильной станции за пределами зоны, контролируе­мой HLR.

Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. Когда абонент звонит из новой зоны обслуживания, VLR уже располагает всей информацией, необходимой для обслуживания вызова. В случае роуминга абонента в зону действия другого MSC, VLR запрашивает данные об абоненте из HLR, к которому принадлежит данный абонент. HLR в свою очередь передаёт копию данных об абоненте в запрашивающий VLR и в свою очередь обновляет информацию о новом местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для обеспечения сохранности данных в регистрах HLR и VLR преду­смотрена защита их устройств памяти. VLR содержит такие же данные, что и HLR. Эти данные хранятся в VLR, пока абонент находится в контролируемой зоне. Временные данные, хранящиеся в регистре VLR приведены в таблице 3.4.

Таблица 3.4 – Временные данные, хранящиеся в регистре VLR

Состав временных данных, хранящихся в HLR и VLR
HLR VLR
1 TMSI - временный международ­ный идентификационный номер пользователя
Временный номер подвижной станции, который назначается VLR Идентификация зоны расположения
Адреса регистров перемещения VLR Указания по использованию основных служб
Зоны перемещения подвижной станции Номер соты «эстафетной передачи»
Номер соты при эстафетной передаче Параметры аутентификации и шифрования
Регистрационный статус
Таймер отсутствия ответа (отклю­чения соединения)
Состав используемых в данный момент паролей
Активность связи

При роуминге мобильной станции VLR присваивает ей номер (MSRN). Когда мобильная станция принимает входящий вызов, VLR вы­бирает его MSRN и передает его на MSC, который осуществляет маршрутизацию этого вызова к базовым станциям, находящимся рядом с мо­бильным абонентом.

VLR управляет процедурами установления подлинности во время обработки вызова. По решению оператора TMSI может периодически изменяться для усложнения процедуры идентификации абонентов, Дос­туп к базе данных VLR может обеспечиваться через IMSI, TMSI или че­рез MSRN. В целом VLR представляет собой локальную базу данных о мобиль­ном абоненте для той зоны, где находится абонент. Это позволяет исклю­чить постоянные запросы в HLR и сократить время на обслуживание вы­зовов.

Центр аутентификации AUC предназначен для удостоверения под­линности абонентов с целью исключения несанкционированного исполь­зования ресурсов системы связи. AUC принимает решения о параметрах процесса аутентификации и определяет ключи шифрования абонентских станций на основе базы данных, сосредоточенной в регистре идентифи­кации оборудования (Equipment Identification Register – EIR). Каждый мобильный абонент на время пользования системой связи получает стандартный модуль подлинности абонента (SIM), который со­держит: международный идентификационный номер (IMSI), свой инди­видуальный ключ аутентификации K i и алгоритм аутентификации А3. С помощью записанной в SIM информации в результате взаимного обмена данными между мобильной станцией и сетью осуществляется полный цикл аутентификации и разрешается доступ абонента к сети. Процедура проверки подлинности абонента следующая показана на рисунке 3.2.

Рисунок 3.2 - Схема процедуры аутентификации

Сеть передает случайный номер (RAND) на мобильную станцию. На ней с помощью K i и алгоритма аутентификации А3 определяется значение отклика (SRES), т. е. SRES = Кi*. Мобильная станция посылает вычисленное значение SRES в сеть. Сеть сверяет принятое значение SRES со значением SRES, вычисленным сетью. Если значения совпадают, мобильная станция допускается к пере­даче сообщений. В противном случае связь прерывается и индикатор мобильной станции показывает, что опознавание не состоялось. Для обеспечения секретности вычисление SRES происходит в рамках SIM. Несекретная информация не подвергается обработке в модуле SIM.

Регистр идентификации оборудования EIR содержит базу данных для подтверждения подлинности международного идентификационного номера оборудования мобильной станции (IMEI). База данных EIR со­стоит из списков номеров IMEI, организованных следующим образом:

Белый список – содержит номера IMEI, о которых есть сведения, что они закреплены за санкционированными мобильными станциями;

Черный список – содержит номера IMEI мобильных станций, которые украдены или которым отказано в обслуживании по какой-либо причине;

Серый список – содержит номера IMEI мобильных станций, у которых выявлены проблемы, не являющиеся основанием для внесения в «черный список».

К базе данных EIR имеют доступ MSC данной сети, а также могут получать доступ MSC других мобильных сетей.

Центр эксплуатации и технического обслуживания ОМС является центральным элементом сети GSM. Он обеспечивает управление элемен­тами сети и контроль качества ее работы. ОМС соединяется с другими элементами сети по каналам пакетной передачи протокола Х.25. ОМС обеспечивает обработку аварийных сигналов, предназначенных для опо­вещения обслуживающего персонала, и регистрирует сведения об ава­рийных ситуациях в элементах сети. В зависимости от характера неис­правности ОМС обеспечивает ее устранение автоматически или при ак­тивном вмешательстве персонала. ОМС может осуществить проверку состояния оборудования сети и прохождения вызова мобильной станции. ОМС позволяет регулировать нагрузку в сети.

Центр управления сетью NMC позволяет обеспечивать рациональ­ное иерархическое управление сетью GSM. NMC обеспечивает управле­ние трафиком сети и диспетчерское управление сетью в сложных ава­рийных ситуациях. Кроме того, NMC контролирует и отражает на дис­плее состояние устройств автоматического управления сетью. Это позволяет операторам NMC контролировать региональные проблемы и оказывать помощь при их решении. В экстремальных ситуациях операто­ры NMC могут задействовать такие процедуры управления, как «приори­тетный доступ», когда только абоненты с высоким приоритетом (экс­тренные службы) могут получить доступ к системе. NMC контролирует сеть и ее работу на сетевом уровне и, следова­тельно, обеспечивает сеть данными, необходимыми для ее оптимального развития.

Итак, персонал NMT может сосредоточиться на решении долгосрочных стратегических проблем, связанных со всей сетью в целом, а локальный персонал каждого OMC/OSS может сосредоточиться на решении краткосрочных региональных или тактических проблем.

Оборудование базовой станции BSS состоит из контроллера базо­вой станции (BSC) и приемопередающих базовых станций (BTS). Кон­троллер базовой станции может управлять несколькими BTS. BSC управ­ляет распределением радиоканалов, контролирует соединения, регулиру ет их очередность, обеспечивает режим работы со скачками частоты, мо­дуляцию и демодуляцию сигналов, кодирование и декодирование сооб­щений, кодирование речи, адаптацию скорости передачи речи, данных и вызова. BSS совместно с MSC выполняет функции освобождения канала, если из-за радиопомех не проходит вызов, а также осуществляет приори­тетную передачу информации для некоторых категорий мобильных стан­ций.

Транскодер ТСЕ обеспечивает приведение выходных сигналов ка­нала передачи речи и данных MSC (64 кбит/с ИКМ) к виду, соответст­вующему рекомендациям GSM по радиоинтерфейсу (Рек. GSM 04.08), со скоростью передачи речи 13 кбит/с – полноскоростной канал. Стандар­том предусмотрено использование в перспективе полускоростного рече­вого канала 6,5 кбит/с. Снижение скорости передачи обеспечивается применением специ­ального речепреобразующего устройства, применяющего линейное пре­дикативное кодирование (LPC), долговременное предсказание (LTP), ос­таточное импульсное возбуждение (RPE или RELP). Транскодер, как правило, размещается вместе с MSC. При передаче цифровых сообщений к контроллеру базовых станций BSC осуществля­ется стафингование (добавление дополнительных битов) информацион­ного потока 13 кбит/с до скорости передачи 16 кбит/с. Затем осуществля­ется уплотнение полученных каналов с кратностью 4 в стандартный ка­нал 64 кбит/с. Так формируется определенная Рекомендациями GSM 30-канальная ИКМ-линия, обеспечивающая передачу 120 речевых каналов. Дополнительно один канал (64 кбит/с) выделяется для передачи инфор­мации сигнализации, второй канал (64 кбит/с) может использоваться для передачи пакетов данных, согласующихся с протоколом Х.25 МККТТ. Таким образом, результирующая скорость передачи по указанному ин­терфейсу составляет 30x64 + 64 + 64 = 2048 кбит/с.

Идентификаторы – ряд номеров, которые сеть GSМ использует для определения местоположения абонента при установлении соединения. Данные идентификаторы используются для маршрутизации вызовов к МS. Важно, чтобы каждый идентификационный номер был уникальным и был всегда корректно определён. Описание идентификаторов приведено ниже.

IМSI (International Mobile Subscriber Identity) уникально описывает мобильную станцию в глобальной мировой сети GSМ. Большинство операций внутри сети GSМ производятся именно по этому номеру. IМSI хранится в SIМ, в НLR, в обслуживающем VLR и в АUС. Согласно спецификациям GSM длина IМSI составляет как правило 15 цифр. IМSI состоит из трёх основных частей:

- MCC

- MNC

- MSIN (Mobile Station Identification Number) – идентификационный номер MS.

MSISDN (Моbile Station ISDN Number) это номер абонента, котрый мы набираем, когда хотим ему позвонить. Данных номеров может быть несколько у одного абонента. План нумерации для MSISDN полностью соответствует плану нумерации ТфОП:

- СС (Country Code) - код страны;

- NDC (National Destination Code) - национальный код пункта назначения (города или сети);

- SN (Subscriber Number) - номер абонента.

Для каждой сети РLМN существует свой NDC. В сети связи Республики Казахстан NDC + SN называется «национальный значащий номер». NDС для мобильных сетей обозначаются как DEF и называются «негеографическим кодом зоны». В России для каждой РLМN определены несколько NDС. Номер MSISDN может быть переменной длины. Максимальная длина составляет 15 цифр, префиксы не включаются (+7). Входящее соединение с абонентом сети Beeline осуществляется набором +7 777 ХХХ ХХХХ или же с кодом 705.

ТМSI (Теmporary Mobile Subscriber Identity) – временный номер IМSI, который может выдаваться МS при её регистрации. Он используется для сохранения конфиденциальности передвижения мобильной станции. МS всегда будет выходить в радиоэфир с новым номером ТМSI. ТМSI не имеет жесткой структуры как IМSI, длина его как правило составляет 8 цифр. Поскольку TМSI имеет в два раза меньший размер, чем IМSI, пейджинг в одном цикле осуществляется для двух абонентов, что также сокращает нагрузку на процессор. Каждый раз, когда МS делает запрос на системные процедуры (LU, попытка вызова или активация сервиса) МSС/VLR ставит новый ТМSI в соответствие с IМSI, МSС/VLR. передаёт ТМSI на МS, которая хранит его в SIМ-карте. Сигнализация между МSС/VLR. и МS используется только на основе ТМSI. Таким образом, реальный номер абонента IМSI не передается через радиоэфир. IМSI используется тогда, когда процедура Location Update выполнена неудачно или не назначен ТМSI.

IМЕI (International Mobile Terminal Identity) используется для уникальной идентификации мобильного терминала в сети. Данный код используется в процедурах обеспечения безопасности связи для идентификации украденного оборудования и предотвращения неавторизованного доступа в сеть. Согласно спецификациям GSМ длина IМЕI составляет 15 цифр:

- ТАС (Туре Арргоvаl Соdе) – код утвержденного типового образца (6 цифр);

- FАС (Final Assembly Соdе) – код окончательно собранного изделия,

присваивает производитель (2 цифры);

- SNR (Serial Number) – индивидуальный серийный номер (6 цифр).

Идентифицирует полностью все оборудование с учетом кодов ТАС и FАС.

- Sраrе – свободная цифра. Зарезервирована для будущего использования.

Когда данный код передается в МS, значение данного кода должно быть всегда «0».

IМЕISV (International Mobile Terminal Identity и Software Version number) – обеспечивает уникальную идентификацию каждого МТ, а также обеспечивает соответствие версии программного обеспечения, инсталлированного в МS, разрешенному оператором. Версия программного обеспечения является важным параметром, так как от этого зависят услуги, доступные для МS, а также способность выполнять речевое кодирование. Так, например, PLMN необходимо знать возможности речевого кодирования MS при установлении соединения (например, half rate/full rate, и т.д.). Данные возможности отображаются с помощью IМЕISV, первые 14 цифр которого повторяют IМЕI, а 2 последние:

- SVN (Software Version number) – номер программной версии, позволяют производителю МS идентифицировать различные версии программного обеспечения утверждённого типового образца МS. SVN со значением 99, зарезервирован для будущих целей.

МSRN (Моbile Station Roaming Number) – временный номер, необходимый для маршрутизации входящего соединения в тот МSС, в котором сейчас находится МS. Время использования МSRN очень маленькое - только проключение входящего соединения, после этого номер освобождается и может быть использован для проключения следующего соединения. МSRN состоит из трёх частей, таких же как в MSISDN, но в этом случае SN означает адрес обслуживающего МSC/VLR.

LAI (Location Area Identity) – номер области (LA), описывающий уникально LA в рамках всей мировой сети GSM. LAI состоит из следующих частей:

- MCC (Mobile Country Code) – код мобильной связи для страны (3 цифры);

- MNC (Mobile Network Code) – код оператора мобильной связи (3 цифры);

- LAC (Location Area Code) – код местоположения, максимальная длина LAC составляет 16 бит, что позволяет определить 65536 различных LA внутри одной PLMN.

- CGI (Cell Global Identity) используется для идентификации конкретной соты внутри LA. Идентификация соты осуществляется посредством добавления параметра Cell Identity (CI) к компонентам LAI. CI имеет размер 16 бит.

- BSIC (Base Station Identity Code) дает возможность MS различать соты с одинаковыми частотами. BSIC состоит из:

- NCC (Network Color Code) – цветовой код сети. Используется для того, чтобы разграничивать зоны действия операторов в тех местах, где сети операторов перекрывают друг друга.

- BCC (Base station Color Code) – цветовой код базовой станции. Используется для того, чтобы различать между собой базовые станции, использующие одинаковые частоты.

Контактная сеть (КС) - сложное инженерное сооружение, имеющее значительную протяженность и периодическую структуру, предназначенное для непрерывного электроснабжения подвижного состава посредством скользящего контакта.

Анализ простоев подвижного состава (ПС) трамвая на линии в ряде крупных городов показывает, что довольно частой причиной простоев на линии становится отказ контактной сети. Так, по данным департамента транспорта г. Новосибирска, до 7,5 % простоев ПС во временном выражении произошло на линии из-за отказа КС. В связи с этим оценка технического состояния КС с позиций надежности - одна из важнейших задач.

При анализе отказов КС в г. Новосибирске были выявлены и исключены отказы, возникавшие в результате посторонних взаимодействий, таких как обрыв подвесок негабаритными грузами, повреждение опорных конструкций транспортными средствами, отжиг провода в результате аварий на ПС, повреждение подвесок неисправными токоприемниками. В ходе предварительного анализа статистического материала было выявлено, что основную часть (79,8 % от общего количества отказов) составляют такие отказы: обрыв контактного провода, вырыв провода из зажима, обрыв гибкой поперечины, повреждение пересечений.

Анализ статистического материала и данных эксплуатационных служб показывает, что контактная подвеска не является равнонадежной системой, что свидетельствует о необходимости дальнейшего совершенствования конструкций и узлов контактной подвески трамвая, в частности пересечений. Наибольшее количество отказов возникает в момент прохождения токоприемником спецчастей и точек подвешивания и фиксации контактного провода, т. е. в результате неудовлетворительного взаимодействия, обусловленного неправильной регулировкой и монтажом подвески, а также неисправностями токоприемника.

Следует отметить, что до 27,3 % всех отказов токоприемников трамвая на линии возникает в результате пропилов и повышенного износа контактных вставок, что, как известно , в значительной мере вызвано нарушением параметров контактной подвески, таких как: величины зигзагов, высота контактного провода над уровнем головок рельсов, уклоны и подъемы контактного провода, поджоги.

Кроме того, из графиков, показанных на рис. 4.10, прослеживается явная зависимость количества повреждений от климатических условий. Так, максимальная интенсивность отказов вида «обрыв гибкой поперечины» приходится на май и сентябрь с наибольшим суточным перепадом температур, а по отказам типа «обрыв КП и вырыв КП» из зажима максимальная интенсивность приходится на июнь, характеризующийся самыми высокими температурами.

Рис. 4.10.

Поскольку КС является сложным электротехническим объектом, надежность ее как единого целого определяется надежностью составляющих элементов. Поэтому при анализе надежности КС необходимо:

  • определить влияние типа подвески и качества ее обслуживания на надежность КС;
  • выявить элементы, имеющие пониженную, по сравнению с другими, надежность;
  • определить климатические факторы, влияющее на надежность элементов.

Основное требование к КС как элементу системы технического обслуживания и ремонта - постоянное соответствие основных параметров необходимому уровню надежности, условиям эксплуатации и интенсивности использования. Такое соответствие может быть достигнуто, если фактические показатели надежности КС, как и параметры системы технического обслуживания и ремонта, формируются на основе объективной информации о техническом состоянии КС.

Определить техническое состояние КС можно по результатам измерения и оценки большого количества входных, внутренних и выходных параметров. Практически же для определения технического состояния достаточно выделить совокупность прямых и косвенных диагностических признаков и параметров, отображающих наиболее вероятные неисправности, связанные со снижением работоспособности и возникновением отказов.

Блочно-функциональная декомпозиция КС показана на рис. 4.11 . Вертикальная декомпозиция приводит к построению иерархии связей составляющих ее компонентов. В этой иерархии выделено четыре уровня: секционный, включающий в себя секцию контактной сети; системный, включающий поддерживающие, несущие, фиксирующие, линейные токоведущие, опорные устройства, устройства компенсации температурных удлинений, сопряжения и специальные части; подсистемный уровень включает в себя отдельные сборочные единицы; четвертый уровень - элементный - включает неразборные детали. Такая декомпозиция предопределяет форму соподчинения диагностических целей и алгоритмов. Горизонтальная декомпозиция КС позволяет выделить отдельные составляющие по основному принципу физического процесса, функциональному назначению или принципу технического исполнения.

Рис. 4.11.

В качестве примера взаимосвязи элементов КС на рис. 4.12 приведены схемы при простой (а) и цепной (б) подвесках.

При диагностировании каждой из этих систем в ряду нескольких используемых физических методов диагностирования можно выделить доминирующий, позволяющий с достаточной степенью достоверности определить техническое состояние КС.

В процессе эксплуатации КС может находиться в следующих основных состояниях:

Исправна и работоспособна, а значит, и параметры Z, характеризующие состояние ее элементов и узлов, находятся в пределах номинального поля допусков:


Рис. 4.12.

Неисправна, но работоспособна, что обусловлено выходом параметров основных элементов и узлов из поля допусков, но не выше предельных значений:

Неисправна и неработоспособна, следовательно, параметры основных элементов и узлов вышли за пределы допусков:

Границы указанных допусков для существующих типов контактных подвесок приведены в нормативных документах . Однако следует отметить, что существующие допуски в основном отражают состояние подвески через ее геометрические размеры в статическом состоянии, т. е. при отсутствии подвижного состава. В режиме нормального функционирования КС на всем своем протяжении находится во взаимодействии с токоприемниками ПС, а следовательно, должна оцениваться также по показателям, характеризующим взаимодействие, учитывающее надежность, долговечность и качество, т. е. стабильность контакта.

Заданный уровень эксплуатационной надежности КС поддерживается реализацией системы ремонтов и регулировок, определенной нормативно-технической документацией. Существующая система технического обслуживания и ремонта, направленная на поддержание работоспособности КС, включает в себя контроль важнейших параметров контактной подвески и их регулировку. Однако контрольные измерения показывают, что техническое оснащение отдельных операций недостаточно и малопроизводительно. Кроме того, предусматривается контроль параметров КС в статическом состоянии, что при имеющихся связях еще в большей степени затрудняет объективную оценку ее состояния. Следовательно, получить полную и достоверную информацию можно лишь посредством комплексного диагностирования всех параметров КС на всем ее протяжении в режиме функционирования.

Под структурой (топологией) компьютерной сети обычно понимается физическое расположение компьютеров сети один относительно одного и способ соединения их линиями связи.

Существует три основные топология сети:

1. Сетевая топология шина (bus), при которой все компьютеры параллельно подключаются к одной линии связи и информация от каждого компьютера одновременно передается всем другим компьютерам;

2. Cетевая топология звезда (star), при которой к одному центральному компьютеру присоединяются другие периферийные компьютеры, причем каждый из них использует свою отдельную линию связи;

3. Cетевая топология кольцо (ring), при которой каждый компьютер передает информацию всегда только одному компьютеру, следующему в цепочке, а получает информацию только от предыдущего компьютера в цепочке, и эта цепочка замкнута в «кольцо».

Сетевая топология «шина»

Сетевая топология «звезда»

Сетевая топология «кольцо»

На практике нередко используют и комбинации базовой топологии, но большинство сетей ориентированные именно на этих три.

При проектировании сети для данной организации будем использовать топологию «Звезда». Топология в виде “звезды”является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях. Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом.

Центральный узел управления – файловый сервер – реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из центра узла управления.

Структурная схема сети

Логическая схема сети

В сети следует воспользоваться каким-либо методом определения того, какой узел и в течение какого времени должен использовать линии обмена данными. Эти функции реализуются сетевым протоколом, который необходим для предотвращения доступа к шине более одного пользователя в любой конкретный момент времени.

В случае одновременного помещения в сеть двух наборов данных происходит конфликт данных и их потеря. В настоящее время используются два фактически стандартных сетевых протокола: Ethernet и Token Ring (Эстафетное кольцо).

В данном проекте будет использован стандарт Gigabit Ethernet, поддерживает скорость передачи до 1000 Мбит/с. В качестве подвида выбран 1000BASE-T, IEEE 802.3ab – стандарт, использующий витую пару категорий 5e или 6. В передаче данных участвуют все 4 пары. Скорость передачи данных – 250 Мбит/с по одной паре.

Ethernet – пакетная технология компьютерных сетей, преимущественно локальных. Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде – на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3.

Преимущества Ethernet:

· известная технология;

· доступность.

· обеспечивает быструю, эффективную доставку данных, необходимую для обмена данными в реальном времени.

Исходя из схемы информационных потоков, разделения этих потоков, и схемы информационной потоков с учетом серверов, также зная расположение зданий и их габариты составим структурную схему корпоративной сети (В ПРИЛОЖЕНИИ) и приводим ее краткое описание.

Организация связи с филиалами.

В этом разделе необходимо описать выданный преподавателем тип связи с филиалами по следующим разделам: теоретическое описание выданного метода, аппаратура, которая позволяет организовать данную связь на приемной и передающей стороне.

Распределение адресов рабочих станций с учетом структурной схемы.

В данном разделе необходимо разделить сеть на несколько подсетей исходя из структурной схемы сети. Определить IP – адреса для подсетей (для серверов и ПК), маску и широковещательные адреса. Для распределения адресов использовать внеклассовую модель.

Выбор сетевых протоколов.

Выбрать сетевые протоколы, которые будут использоваться в разработанной сети и каких функции на основе данных протоколов будут выполнятся.

Выбор активного и пассивного оборудования корпоративной сети.

Виды используемых кабелей.

В качестве средств коммуникации наиболее часто используются витая пара, радиоканал и оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели:

1. Стоимость монтажа и обслуживания;

2. Скорость передачи информации;

3. Ограничения на величину расстояния передачи информации (без дополнительных усилителей–повторителей (репитеров));

4. Безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость и безопасность передачи данных.



Выбор типов кабелей для сети.

Чтобы выбрать тип кабеля, а значит и тип сетевой технологии и, соответственно, оборудование, нужно знать какая нагрузка будет на этот канал связи. Протяженность этого канала и условия окружающей среды, в которой этот канал будет находиться.

Рассчитаем нагрузку на каналы связи. Для этого необходимы данные из таблиц в первой главе, а также структурная схема сети.

Выбор коммутаторов.

Коммутаторы (Switch) – это:
1. Многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами.
2. В сети с коммутацией пакетов - устройство, направляющее пакеты, обычно на один из узлов магистральной сети. Такое устройство называется также коммутатором данных.

Коммутатор предоставляет каждому устройству (серверу, ПК или концентратору), подключенному к одному из его портов, всю полосу пропускания сети. Это повышает производительность и уменьшает время отклика сети за счет сокращения числа пользователей на сегмент. Как и двухскоростные концентраторы, новейшие коммутаторы часто конструируются для поддержки 10 или 100 Мбит/с, в зависимости от максимальной скорости подключаемого устройства. Если они оснащаются средствами автоматического опознавания скорости передачи, то могут сами настраиваться на оптимальную скорость - изменять конфигурацию вручную не требуется. Как работает коммутатор? В отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству (адресату), так как знают MAC-адрес (Media Access Control) каждого подключенного устройства (аналогично тому, как почтальон по почтовому адресу определяет, куда нужно доставить письмо). В результате уменьшается трафик и повышается общая пропускная способность, а эти два фактора являются критическими с учетом растущих требований к полосе пропускания сети современных сложных бизнес приложений.

Коммутация завоевывает популярность, как простой, недорогой метод повышения доступной полосы пропускания сети. Современные коммутаторы нередко поддерживают такие средства, как назначение приоритетов трафика (что особенно важно при передаче в сети речи или видео), функции управления сетью и управление многоадресной рассылкой.

Для выбора коммутаторов предварительно необходимо вычислить минимальное количество портов у каждого из них. На каждом коммутаторе необходимо предусмотреть запасные порты, чтобы в случае отказа одного из используемых, можно было в кратчайшие сроки устранить неполадку и задействовать один из резервных портов. Такой подход имеет смысл для портов под UTP-кабель. Для оптических портов это неактуально, так как они отказывают крайне редко.

Количество портов рассчитывается по следующей формуле:

где: N – требуемое количество портов; N k – количество занятых портов.

И округляется в большую сторону в зависимости от стандартных количеств портов на коммутаторах.

Далее можно перейти к выбору конкретных моделей коммутаторов. Будем брать по возможности коммутаторы и сетевые карты одной фирмы-производителя. Это позволит избежать конфликтов, а также упростить настройку сети.

Выбор сетевых адаптеров.

Сетевые интерфейсные платы (NIC, Network Interface Card) устанавливаются на настольных и портативных ПК. Они служат для взаимодействия с другими устройствами в локальной сети. Существует целый спектр сетевых плат для различных ПК, имеющих определенные требования требованиям к производительности. Характеризуются по скорости передачи данных и способах подключения к сети.

Если рассматривать просто способ приема и передачи данных на подключенных к сети ПК, то современные сетевые платы (сетевые адаптеры) играют активную роль в повышении производительности, назначении приоритетов для ответственного трафика (передаваемой/принимаемой информации) и мониторинге трафика в сети. Кроме того, они поддерживают такие функции, как удаленная активизация с центральной рабочей станции или удаленное изменение конфигурации, что значительно экономит время и силы администраторов постоянно растущих сетей.

Выбор конфигурации серверов и рабочих станций.

Главным требованиям к серверам является надежность. Для повышения надежности будем выбирать машины с RAID контроллером. Он может работать в двух режимах: «зеркала» и в «быстром режиме». Нас будет интересовать первый режим. При этом режиме данные записываемые на жесткий диск одновременно записываются и на другой второй аналогичный жесткий диск (дублируются). Так же для серверов необходимо большее количество оперативной памяти (сколько памяти требуется выяснить не возможно, так как нам неизвестны реальные размеры баз данных и объемы хранимой на жестких дисках информации). Также на сервере совершается обработка запросов(серверы баз данных) пользователя, следовательно нужно выбирать марку и частоту процессора лучше (больше), чем на рабочих станциях.

Для организации передачи данных по энергосетям передаваемая информация подвергается тем же преобразованиям, что и при передаче данных по телефонной сети общего пользования. То есть передаваемая информация на передающем конце подвергается кодированию, цифро-аналоговому преобразованию и модуляции, а на приемном конце - демодуляции, аналого-цифровому преобразованию и декодированию.

Поскольку каждый абонент системы передачи данных является как источником, так и получателем информации, то на каждом ПК необходимо организовать передающую и приемную части системы. Это удобно организовать, используя для передатчика и приемника один внутренний и внешний интерфейсы. Таким образом, обобщеная структурная схема системы передачи данных на одном ПК будет иметь следующий вид (рис. 3.1).

Рисунок 3.1 - Обобщеная схема системы передачи данных

Из рис. 3.1 видно, что передаваемые информация в цифровом виде поступает в устройство передачи данных через внутренний интерфейс. Внутренний интерфейс служит для выделения из всего потока данных, которые передаются по внутренней шине данных ПК, тех, которые предназначены для передачи в линию связи. Процесс выделения происходит в соответствии адресной информацией, передаваемой по шине адреса. Из этого следует, что внутренний интерфейс обеспечивает поступление в передающее устройство только тех данных, которые необходимо передать по линии связи. Таким же образом, принятые приемником данные, передаются через внутренний интерфейс в ПК для дальнейшей обработки.

Внешний интерфейс служит для согласования устройства передачи и приема данных с линией связи. Он выполняет функции разделения сигналов по направлениям, адаптацию сигналов к среде передачи, развязки по напряжению, согласования сопротивлений в линии и линейном тракте и выделения только полезного сигнала.

Процессы кодирования, декодирования, цифро-аналогового и аналого-цифрового преобразования, а так же модуляции и демодуляции выполняются микропроцессорной системой. Эта система имеет в своем составе постоянное запоминающее устройство (ПЗУ), которое содержит программное обеспечение, обеспечивающее выполнение определенных функций микропроцессорной системы. Так же в нее входят оперативное запоминающее устройство (ОЗУ) и перепрограммируемое постоянное запоминающее устройство (ППЗУ). ОЗУ используется для хранения промежуточных результатов вычислений, ключевых данных. В ППЗУ заносятся временные алгоритмы работы микропроцессорной системы. Все преобразования, которым подвергается сигнал, выполняются в самом микропроцессоре (МП). К используемому микропроцессору предъявляются особые требования. Так как при реализации алгоритмов кодирования и декодирования основной математической операцией является умножение с плавающей запятой, то при использовании классических МП резко возрастает сложность написания программ и время их выполнения. Сегодня в цифровой обработке сигналов широко применяются цифровые сигнальные процессоры, называемые еще - DSP-контроллерами. Основное достоинство этих DSP-контроллеров - возможность выполнения однотактных умножений, сложений, наличие специфических команд, таких как двоичная инверсия. Использование такого DSP-контроллера резко снижает требования к его быстродействию, что положительно сказывается на цене системы. Используя в микропроцессорной системе, наряду с обычным микропроцессором, DSP-контроллер, можно перераспределить выполняемые функции. Так МП занимается организацией обмена данными по шине данных с ПК, генерируя и получая адресную информацию по шине адреса, то есть выполняет функции внутреннего интерфейса. Так как быстродействие DSP-контроллера на много выше МП, то он выполняет функции кодирования, декодирования, цифро-аналогового и аналого-цифрового преобразования, а так же модуляции и демодуляции.

Внешний интерфейс организован несколькими устройствами, которые выполняют каждый свою функцию. Для адаптации сигнала к линии связи используется адаптивный эквалайзер. Эхокомпенсатор используется для разделения сигналов по направлениям. Устройство присоединения, выполняющее следующие функции: отсекает промчастоту и пропускает только полезный высокочастотный сигнал, служит заградительным устройством для высокого напряжения, служит согласующим элементом между высокочастотным кабелем и линейным трактом, так как волновое сопротивление кабеля не равно характеристическому сопротивлению линейного тракта.

Таким образом, общая структурная схема системы передачи данных по энергосети имеет следующий вид (рис. 3.2), где, УП - устройство присоединения, ША - шина адреса, ШД - шина данных.


Рисунок 3.2 - Структурная схема системы передачи информации по энергосетям

Исходя из этой схемы, можно привести структурную схему передатчика (рис. 3.3).

Функционирование МП осуществляется по алгоритму, записанному в ПЗУ и ППЗУ. Данные, которые анализируются микропроцессором, заносятся в ОЗУ. После выполнения всех необходимых операций над данными, происходит очистка ОЗУ, для того чтобы принять другие данные. Принцип работы кодера зависит от способа кодирования, который выбирается из условия получения минимальной вероятности ошибки и максимальной помехозащищенности. Модуляция должна обеспечивать перенос спектра полезного сигнала в область частот, где он будет меньше всего подвержен воздействию помех. Так же от способа модуляции зависит скорость передачи данных и максимальная помехоустойчивость. Поэтому от выбора вида модуляции зависят основные параметры системы передачи данных в целом.


Рисунок 3.3 - Структурная схема передатчика

Поскольку передача данных осуществляется в четырех частотных диапазонах, которые расположены довольно близко друг от друга, то появляется необходимость ограничения спектров передаваемых сигналов в рамках частотного диапазона. Ограничение производится для того, чтобы сигналы, передаваемые в одном диапазоне, не влияли на сигналы, которые передаются в другом частотном диапазоне. Для ограничения спектров используются полосовые фильтры, настроенные каждый на свою резонансную частоту.

Управление процессами, происходящими в микропроцессоре и DSP-контроллере, происходит с помощью драйверов, которые поставляются вместе с микропроцессором и DSP-контроллером от фирмы-производителя.



Загрузка...
Top