Типы фильтров ФНЧ Баттерворта ФНЧ Чебышева I типа  Минимальный порядок фильтра ФНЧ с МОС . Курсовая работа: Фильтр верхних частот Баттерворта Фильтр баттерворта расчет

АЧХ фильтра Баттерворта описывается уравнением

Особенности фильтра Баттерворта: нелинейная ФЧХ; частота среза не зависящая от числа полюсов; колебательный характер переходной характеристики при ступенчатом входном сигнале. С увеличением порядка фильтра колебательный характер усиливается.

Фильтр Чебышева

АЧХ фильтра Чебышева описывается уравнением

,

где T n 2 (ω/ω н ) – полином Чебышева n –го порядка.

Полином Чебышева вычисляется по рекуррентной формуле

Особенности фильтра Чебышева: повышенная неравномерность ФЧХ; волнообразная характеристика в полосе пропускания. Чем выше коэффициент неравномерности АЧХ фильтра в полосе пропускания, тем более резкий спад в переходной области при одном и том же порядке. Колебания переходного процесса при ступенчатом входном сигнале сильнее, чем у фильтра Баттерворта. Добротность полюсов фильтра Чебышева выше, чем у фильтра Баттерворта.

Фильтр Бесселя

АЧХ фильтра Бесселя описывается уравнением

,

где
;B n 2 (ω/ω cp з ) – полином Бесселя n -го порядка.

Полином Бесселя вычисляется по рекуррентной формуле

Особенности фильтра Бесселя: достаточно равномерные АЧХ и ФЧХ, аппроксимируемые функцией Гаусса; фазовый сдвиг фильтра пропорционален частоте, т.е. фильтр обладает частотно-независимым групповым временем задержки. Частота среза изменяется при изменении количества полюсов фильтра. Спад АЧХ фильтра обычно более пологий, чем у Баттерворта и Чебышева. Особенно хорошо этот фильтр подходит для импульсных цепей и фазочувствительной обработки сигнала.

Фильтр Кауэра (эллиптический фильтр)

Общий вид передаточной функции фильтра Кауэра

.

Особенности фильтра Кауэра: неравномерная АЧХ в полосе пропускания и в полосе задерживания; самый резкий спад АЧХ из всех приведенных фильтров; реализует требуемые передаточные функции при меньшем порядке фильтра, чем при использовании фильтров других типов.

Определение порядка фильтра

Требуемый порядок фильтра определяется по приведенным ниже формулам и округляется в сторону ближайшего целого значения. Порядк фильтра Баттерворта

.

Порядка фильтра Чебышева

.

Для фильтра Бесселя не существует формулы расчета порядка, вместо этого приводятся таблицы соответствия порядка фильтра минимально необходимым на заданной частоте отклонению времени задержки от единичной величины и уровню потерь в дБ).

При расчете порядка фильтра Бесселя задаются следующие параметры:

    Допустимое процентное отклонение группового времени задержки на заданной частоте ω ω cp з ;

    Может быть задан уровень ослабления коэффициента передачи фильтра в дБ на частоте ω , нормированной относительно ω cp з .

На основании этих данных определяется требуемый порядок фильтра Бесселя.

Схемы каскадов фнч 1–го и 2–го порядка

На рис. 12.4, 12.5 приведены типовые схемы каскадов ФНЧ.


а ) б )

Рис. 12.4. Каскады ФНЧ Баттерворта, Чебышева и Бесселя: а – 1–го порядка; б – 2–го порядка


а ) б )

Рис. 12.5. Каскады ФНЧ Кауэра: а – 1–го порядка; б – 2–го порядка

Общий вид передаточных функций ФНЧ Баттерворта, Чебышева и Бесселя 1–го и 2–го порядка

,
.

Общий вид передаточных функций ФНЧ Кауэра 1–го и 2–го порядка

,
.

Ключевым отличием фильтра Кауэра 2–го порядка от заграждающего фильтра является то, что в передаточной функции фильтра Кауэра отношение частот Ω s ≠ 1.

Методика расчета ФНЧ Баттерворта, Чебышева и Бесселя

Данная методика построена на основе коэффициентов, приведенных в таблицах и справедлива для фильтров Баттерворта, Чебышева и Бесселя. Методика расчета фильтров Кауэра приводится отдельно. Расчет ФНЧ Баттерворта, Чебышева и Бесселя начинается с определения их порядка. Для всех фильтров задаются параметры минимального и максимального ослабления и частота среза. Для фильтров Чебышева дополнительно определяется коэффициент неравномерности АЧХ в полосе пропускания, а для фильтров Бесселя – групповое время задержки. Далее определяется передаточная функция фильтра, которая может быть взята из таблиц, и рассчитываются его каскады 1–го и 2–го порядка, соблюдается следующий порядок расчета:

    В зависимости от порядка и типа фильтра выбираются схемы его каскадов, при этом фильтр четного порядка состоит из n /2 каскадов 2–го порядка, а фильтр нечетного порядка – из одного каскада 1–го порядка и (n 1)/2 каскадов 2–го порядка;

    Для расчета каскада 1–го порядка:

По выбранному типу и порядку фильтра определяется значение b 1 каскада 1–го порядка;

Уменьшая занимаемую площадь, выбирается номинал емкости C и рассчитывается R по формуле (можно выбрать и R , но рекомендуется выбирать C , из соображения точности)

;

Вычисляется коэффициента усиления К у U 1 каскада 1–го порядка, который определяется из соотношения

,

где К у U – коэффициент усиления фильтра в целом; К у U 2 , …, К у Un – коэффициенты усиления каскадов 2–го порядка;

Для реализации усиления К у U 1 необходимо задать резисторы, исходя из следующего соотношения

R B = R A ּ(К у U1 –1) .

    Для расчета каскада 2–го порядка:

Уменьшая занимаемую площадь выбраются номиналы емкостей C 1 = C 2 = C ;

Выбраются по таблицам коэффициенты b 1 i и Q pi для каскадов 2–го порядка;

По заданному номиналу конденсаторов C рассчитываются резисторы R по формуле

;

Для выбранного типа фильтра необходимо задать соответствующий коэффициент усиления К у Ui = 3 – (1/Q pi ) каждого каскада 2-го порядка, посредством задания резисторов, исходя из следующего соотношения

R B = R A ּ(К у Ui –1) ;

Для фильтров Бесселя необходимо умножить номиналы всех емкостей на требуемое групповое время задержки.

АЧХ фильтра Баттерворта описывается уравнением

Особенности фильтра Баттерворта: нелинейная ФЧХ; частота среза не зависящая от числа полюсов; колебательный характер переходной характеристики при ступенчатом входном сигнале. С увеличением порядка фильтра колебательный характер усиливается.

Фильтр Чебышева

АЧХ фильтра Чебышева описывается уравнением

,

где T n 2 (ω/ω н ) – полином Чебышева n –го порядка.

Полином Чебышева вычисляется по рекуррентной формуле

Особенности фильтра Чебышева: повышенная неравномерность ФЧХ; волнообразная характеристика в полосе пропускания. Чем выше коэффициент неравномерности АЧХ фильтра в полосе пропускания, тем более резкий спад в переходной области при одном и том же порядке. Колебания переходного процесса при ступенчатом входном сигнале сильнее, чем у фильтра Баттерворта. Добротность полюсов фильтра Чебышева выше, чем у фильтра Баттерворта.

Фильтр Бесселя

АЧХ фильтра Бесселя описывается уравнением

,

где
;B n 2 (ω/ω cp з ) – полином Бесселя n -го порядка.

Полином Бесселя вычисляется по рекуррентной формуле

Особенности фильтра Бесселя: достаточно равномерные АЧХ и ФЧХ, аппроксимируемые функцией Гаусса; фазовый сдвиг фильтра пропорционален частоте, т.е. фильтр обладает частотно-независимым групповым временем задержки. Частота среза изменяется при изменении количества полюсов фильтра. Спад АЧХ фильтра обычно более пологий, чем у Баттерворта и Чебышева. Особенно хорошо этот фильтр подходит для импульсных цепей и фазочувствительной обработки сигнала.

Фильтр Кауэра (эллиптический фильтр)

Общий вид передаточной функции фильтра Кауэра

.

Особенности фильтра Кауэра: неравномерная АЧХ в полосе пропускания и в полосе задерживания; самый резкий спад АЧХ из всех приведенных фильтров; реализует требуемые передаточные функции при меньшем порядке фильтра, чем при использовании фильтров других типов.

Определение порядка фильтра

Требуемый порядок фильтра определяется по приведенным ниже формулам и округляется в сторону ближайшего целого значения. Порядк фильтра Баттерворта

.

Порядка фильтра Чебышева

.

Для фильтра Бесселя не существует формулы расчета порядка, вместо этого приводятся таблицы соответствия порядка фильтра минимально необходимым на заданной частоте отклонению времени задержки от единичной величины и уровню потерь в дБ).

При расчете порядка фильтра Бесселя задаются следующие параметры:

    Допустимое процентное отклонение группового времени задержки на заданной частоте ω ω cp з ;

    Может быть задан уровень ослабления коэффициента передачи фильтра в дБ на частоте ω , нормированной относительно ω cp з .

На основании этих данных определяется требуемый порядок фильтра Бесселя.

Схемы каскадов фнч 1–го и 2–го порядка

На рис. 12.4, 12.5 приведены типовые схемы каскадов ФНЧ.


а ) б )

Рис. 12.4. Каскады ФНЧ Баттерворта, Чебышева и Бесселя: а – 1–го порядка; б – 2–го порядка


а ) б )

Рис. 12.5. Каскады ФНЧ Кауэра: а – 1–го порядка; б – 2–го порядка

Общий вид передаточных функций ФНЧ Баттерворта, Чебышева и Бесселя 1–го и 2–го порядка

,
.

Общий вид передаточных функций ФНЧ Кауэра 1–го и 2–го порядка

,
.

Ключевым отличием фильтра Кауэра 2–го порядка от заграждающего фильтра является то, что в передаточной функции фильтра Кауэра отношение частот Ω s ≠ 1.

Методика расчета ФНЧ Баттерворта, Чебышева и Бесселя

Данная методика построена на основе коэффициентов, приведенных в таблицах и справедлива для фильтров Баттерворта, Чебышева и Бесселя. Методика расчета фильтров Кауэра приводится отдельно. Расчет ФНЧ Баттерворта, Чебышева и Бесселя начинается с определения их порядка. Для всех фильтров задаются параметры минимального и максимального ослабления и частота среза. Для фильтров Чебышева дополнительно определяется коэффициент неравномерности АЧХ в полосе пропускания, а для фильтров Бесселя – групповое время задержки. Далее определяется передаточная функция фильтра, которая может быть взята из таблиц, и рассчитываются его каскады 1–го и 2–го порядка, соблюдается следующий порядок расчета:

    В зависимости от порядка и типа фильтра выбираются схемы его каскадов, при этом фильтр четного порядка состоит из n /2 каскадов 2–го порядка, а фильтр нечетного порядка – из одного каскада 1–го порядка и (n 1)/2 каскадов 2–го порядка;

    Для расчета каскада 1–го порядка:

По выбранному типу и порядку фильтра определяется значение b 1 каскада 1–го порядка;

Уменьшая занимаемую площадь, выбирается номинал емкости C и рассчитывается R по формуле (можно выбрать и R , но рекомендуется выбирать C , из соображения точности)

;

Вычисляется коэффициента усиления К у U 1 каскада 1–го порядка, который определяется из соотношения

,

где К у U – коэффициент усиления фильтра в целом; К у U 2 , …, К у Un – коэффициенты усиления каскадов 2–го порядка;

Для реализации усиления К у U 1 необходимо задать резисторы, исходя из следующего соотношения

R B = R A ּ(К у U1 –1) .

    Для расчета каскада 2–го порядка:

Уменьшая занимаемую площадь выбраются номиналы емкостей C 1 = C 2 = C ;

Выбраются по таблицам коэффициенты b 1 i и Q pi для каскадов 2–го порядка;

По заданному номиналу конденсаторов C рассчитываются резисторы R по формуле

;

Для выбранного типа фильтра необходимо задать соответствующий коэффициент усиления К у Ui = 3 – (1/Q pi ) каждого каскада 2-го порядка, посредством задания резисторов, исходя из следующего соотношения

R B = R A ּ(К у Ui –1) ;

Для фильтров Бесселя необходимо умножить номиналы всех емкостей на требуемое групповое время задержки.

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Баттерворта 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Чебышева 3 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)


ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Чебышева 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)


ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Бесселя 3 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Бесселя 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

    Произвести анализ влияния ошибок задания коэффициентов цифрового ФНЧ на АЧХ (изменяя один из коэффициентов b j ). Описать характер изменения ЧХ. Сделать вывод о влиянии изменения одного из коэффициентов на поведение фильтра.

Анализ влияния ошибок задания коэффициентов цифрового ФНЧ на АЧХ проведем на примере фильтра Бесселя 4 порядка.

Выберем величину отклонения коэффициентов ε, равной –1,5%, чтобы максимальное отклонение АЧХ составило около 10%.

АЧХ "идеального" фильтра и фильтров с измененными коэффициентами на величину ε показана на рисунке:

И

з рисунка видно, что наибольшее влияние на АЧХ оказывает изменение коэффициентовb 1 и b 2 , (их величина превышает величину других коэффициентов). Используя отрицательную величину ε, отмечаем, что положительные коэффициенты уменьшают амплитуду в нижней части спектра, а отрицательные – увеличивают. При положительной величине ε, все происходит наоборот.

    Проквантовать коэффициенты цифрового фильтра на такое число двоичных разрядов, чтобы максимальное отклонение АЧХ от исходной составляло порядка 10 - 20%. Зарисовать АЧХ и описать характер ее изменения.

Изменяя число разрядов дробной части коэффициентов b j отметим, чтомаксимальное отклонение АЧХ от исходной не превышающее 20% получается приn≥3.

Вид АЧХ при различных n приведен на рисунках:

n =3, максимальное отклонение АЧХ=19,7%

n =4, максимальное отклонение АЧХ=13,2%

n =5, максимальное отклонение АЧХ=5,8%

n =6, максимальное отклонение АЧХ=1,7%

Таким образом, можно отметить, что увеличение разрядности при квантовании коэффициентов фильтра приводит к тому, что АЧХ фильтра все больше стремится к исходной. Однако необходимо отметить, что это усложняет физическую реализуемость фильтра.

Квантование при различных n можно проследить по рисунку:



План:

    Введение
  • 1 Обзор
    • 1.1 Нормированные полиномы Баттерворта
    • 1.2 Максимальная гладкость
    • 1.3 Спад характеристики на высоких частотах
  • 2 Проектирование фильтра
    • 2.1 Топология Кауэра
    • 2.2 Топология Саллена-Кея
  • 3 Сравнение с другими линейными фильтрами
  • 4 Пример
  • Литература

Введение

Фильтр Баттерво́рта - один из типов электронных фильтров. Фильтры этого класса отличаются от других методом проектирования. Фильтр Баттерворта проектируется так, чтобы его амплитудно-частотная характеристика была максимально гладкой на частотах полосы пропускания.

Подобные фильтры были впервые описаны британским инженером Стефаном Баттервортом в статье «О теории фильтрующих усилителей» (англ. On the Theory of Filter Amplifiers ), в журнале Wireless Engineer в 1930 году.


1. Обзор

АЧХ фильтра Баттерворта максимально гладкая на частотах полосы пропускания и снижается практически до нуля на частотах полосы подавления. При отображении частотного отклика фильтра Баттерворта на логарифмической АФЧХ, амплитуда снижается к минус бесконечности на частотах полосы подавления. В случае фильтра первого порядка АЧХ затухает со скоростью −6 децибел на октаву (-20 децибел на декаду) (на самом деле все фильтры первого порядка независимо от типа идентичны и имеют одинаковый частотный отклик). Для фильтра Баттерворта второго порядка АЧХ затухает на −12 дБ на октаву, для фильтра третьего порядка - на −18 дБ и так далее. АЧХ фильтра Баттерворта - монотонно убывающая функция частоты. Фильтр Баттерворта - единственный из фильтров, сохраняющий форму АЧХ для более высоких порядков (за исключением более крутого спада характеристики на полосе подавления) тогда как многие другие разновидности фильтров (фильтр Бесселя, фильтр Чебышева, эллиптический фильтр) имеют различные формы АЧХ при различных порядках.

В сравнении с фильтрами Чебышева I и II типов или эллиптическим фильтром, фильтр Баттерворта имеет более пологий спад характеристики и поэтому должен иметь больший порядок (что более трудно в реализации) для того, чтобы обеспечить нужные характеристики на частотах полосы подавления. Однако фильтр Баттерворта имеет более линейную фазо-частотную характеристику на частотах полосы пропускания.

АЧХ для фильтров Баттерворта нижних частот порядка от 1 до 5. Наклон характерстики - 20n дБ/декаду, где n - порядок фильтра.

Как и для всех фильтров при рассмотрении частотных характеристик используют фильтр нижних частот, из которого легко можно получить фильтр высоких частот, а, включив несколько таких фильтров последовательно, - полосовой фильтр или режекторный фильтр.

Амплитудно-частотная характеристика фильтра Баттерворта -го порядка может быть получена из передаточной функции :

Легко заметить, что для бесконечных значений АЧХ становится прямоугольной функцией, и частоты ниже частоты среза будут пропускаться с коэффициентом усиления , а частоты выше частоты среза будут полностью подавляться. Для конечных значений спад характеристики будет пологим.

С помощью формальной замены представим выражение в виде :

Полюсы передаточной функции расположены на круге радиуса равноудалённо друг от друга в левой полуплоскости. То есть передаточную функцию фильтра Баттерворта можно определить лишь определением полюсов его передаточной функции в левой полуплоскости s-плоскости. -й полюс определяется из следующего выражения:

Передаточную функцию можно записать в виде:

Аналогичные рассуждения применимы и к цифровым фильтрам Баттерворта, с той лишь разницей, что соотношения записываются не для s -плоскости, а для z -плоскости.

Знаменатель этой передаточной функции называется полиномом Баттерворта.


1.1. Нормированные полиномы Баттерворта

Полиномы Баттерворта могут записываться в комплексной форме, как показано выше, однако обычно они записываются в виде соотношений с вещественными коэффициентами (комплексно-сопряжённые пары объединяются с помощью умножения). Нормируются полиномы по частоте среза: . Нормированные полиномы Баттерворта, таким образом, имеют следующую каноническую форму:

, - чётно , - нечётно

Ниже представлены коэффициенты полиномов Баттерворта для первых восьми порядков:

Коэффициенты полиномов
1
2
3
4
5
6
7
8

1.2. Максимальная гладкость

Приняв и , производная амплитудной характеристики по частоте будет выглядеть следующим образом:

Она монотонно убывает для всех так как коэффициент усиления всегда положителен. Таким образом, АЧХ фильтра Баттерворта не имеет пульсаций. При разложении амплитудной характеристи в ряд, получим:

Другими словами, все производные амплитудно-частотной характерситики по частоте до 2n -й равны нулю, из чего следует «максимальная гладкость».


1.3. Спад характеристики на высоких частотах

Приняв , найдём наклон логарифма АЧХ на высоких частотах:

В децибелах высокочастотная асимптота имеет наклон −20n дБ/декаду.

2. Проектирование фильтра

Существует ряд различных топологий фильтра, с помощью которых реализуются линейные аналоговые фильтры. Эти схемы отличаются только значениями элементов, структура же остаётся неизменной.

2.1. Топология Кауэра

Топология Кауэра использует пассивные элементы (ёмкости и индуктивности) . Фильтр Баттеворта с заданной передаточной функцией может быть построен в форме Кауэра 1 типа. k-й элемент фильтра задаётся соотношением:

; k нечётно ; k чётно

2.2. Топология Саллена-Кея

Топология Саллена-Кея использует помимо пассивных также и активные элементы (операционные усилители и ёмкости). Каждый каскад схемы Саллена-Кея представляет собой часть фильтра, математически описываемую парой комплексно-сопряжённых полюсов. Весь фильтр получается последовательным соединением всех каскадов. В случае, если попадается действительный полюс, он должен быть реализован отдельно, обычно в виде RC-цепочки, и включён в общую схему.

Передаточная функция каждого каскада в схеме Саллена-Кея имеет вид:

Нужно, чтобы знаменатель представлял собой один из множителей полинома Баттерворта. Приняв , получим:

Последнее соотношение даёт две неизвестных, которые могут быть выбраны произвольно.


3. Сравнение с другими линейными фильтрами

Рисунок ниже показывает АЧХ фильтра Баттерворта в сравнении с другими популярными линейными фильтрами одинакового (пятого) порядка:

Из рисунка видно, что спад АЧХ фильтра Баттерворта самый медленный из четырёх, однако он имеет и самую гладкую АЧХ на частотах полосы пропускания.

4. Пример

Аналоговый фильтр Баттерворта нижних частот (топология Кауэра) с частотой среза со следующими номиналами элементов: фарад, ом, и генри.

Логарифмический график плотности передаточной функции H(s) на плоскости комплексного аргумента для фильтра Баттерворта третьего порядка с частотой среза . Три полюса лежат на круге единичного радиуса в левой полуплоскости.

Рассмотрим аналоговый низкочастотный фильтр Баттерворта третьего порядка с фарад, ом, и генри. Обозначив полное сопротивление ёмкостей C как 1/Cs и полное сопротивление индуктивностей L как Ls , где - комплексная переменная, и используя уравнения для расчёта электрических схем, получим следующую передаточную функцию для такого фильтра:

АЧХ задаётся уравнением:

а ФЧХ задаётся уравнением:

Групповая задержка определяется как минус производная фазы по круговой частоте и является мерой искажений сигнала по фазе на различных частотах. Логарифмическая АЧХ такого фильтра не имеет пульсаций ни в полосе пропускания, ни в полосе подавления.

График модуля передаточной функции на комплексной плоскости ясно указывает на три полюса в левой полуплоскости. Передаточная функция полностью определяется расположением этих полюсов на единичном круге симметрично относительно действительной оси.

Заменив каждую индуктивность ёмкостью, а ёмкости - индуктивностями, получим высокочастотный фильтр Баттерворта.

И групповая задержка фильтра Баттерворта третьего порядка с частотой среза



Литература

  • В.А. Лукас Теория автоматического управления. - M.: Недра, 1990.
  • Б.Х. Кривицкий Справочник по теоретическим основам радиоэлектроники. - М .: Энергия, 1977.
  • Miroslav D. Lutovac Filter Design for Signal Processing using MATLAB© and Mathematica©. - New Jersey, USA.: Prentice Hall, 2001. - ISBN 0-201-36130-2
  • Richard W. Daniels Approximation Methods for Electronic Filter Design. - New York: McGraw-Hill, 1974. - ISBN 0-07-015308-6
  • Steven W. Smith The Scientist and Engineer’s Guide to Digital Signal Processing. - Second Edition. - San-Diego: California Technical Publishing, 1999. - ISBN 0-9660176-4-1
  • Britton C. Rorabaugh Approximation Methods for Electronic Filter Design. - New York: McGraw-Hill, 1999. - ISBN 0-07-054004-7
  • B. Widrow, S.D. Stearns Adaptive Signal Processing. - Paramus, NJ: Prentice-Hall, 1985. - ISBN 0-13-004029-0
  • S. Haykin Adaptive Filter Theory. - 4rd Edition. - Paramus, NJ: Prentice-Hall, 2001. - ISBN 0-13-090126-1
  • Michael L. Honig, David G. Messerschmitt Adaptive Filters - Structures, Algorithms, and Applications. - Hingham, MA: Kluwer Academic Publishers, 1984. - ISBN 0-89838-163-0
  • J.D. Markel, A.H. Gray, Jr. Linear Prediction of Speech. - New York: Springer-Verlag, 1982. - ISBN 0-387-07563-1
  • L.R. Rabiner, R.W. Schafer Digital Processing of Speech Signals. - Paramus, NJ: Prentice-Hall, 1978. - ISBN 0-13-213603-1
  • Richard J. Higgins Digital Signal Processing in VLSI. - Paramus, NJ: Prentice-Hall, 1990. - ISBN 0-13-212887-X
  • A. V. Oppenheim, R. W. Schafer Digital Signal Processing. - Paramus, NJ: Prentice-Hall, 1975. - ISBN 0-13-214635-5
  • L. R. Rabiner, B. Gold Theory and Application of Digital Signal Processing. - Paramus, NJ: Prentice-Hall, 1986. - ISBN 0-13-914101-4
  • John G. Proakis, Dimitris G. Manolakis Introduction to Digital Signal Processing. - Paramus, NJ: Prentice-Hall, 1988. - ISBN 0-02-396815-X


Загрузка...
Top