Измерение чувствительности приемника. Коэффициент усиления и чувствительность Какая чувствительность приемника считается хорошей

Чувствительность усилителя зависит от коэффициента усиления: она теп выше, чем коэффициент больше. Однако чувствительность радиоприемного устройства определяется не только его способностью усиливать принимаемые сигналы. Если бы такое устройство было абсолютно бесшумным, тогда действи­тельно его чувствительность определялась только способностью усиливать при­нятые радиосигналы. Отсоедините антенну от радиоприемника и установите ре­гулятор громкости на максимум: в динамической головке громкоговорителя по­явится звук, напоминающий звук сыплющегося песка или мелкой крупы. Это собственный шум радиоприемника. Он-то и ставит предел реальной чувстви­тельности радиоприемника. Ведь можно услышать только тот принятый сигнал, громкость которого будет не меньше громкости шума. В радиовещании приня­то, что уровень громкости радиопередачи должен превышать уровень шумов-на выходе радиоприемника на 20 дБ (в 10 раз), а в диапазоне УКВ на 26 дБ (в 20 раз).

Основная причина шумов радиоприемного устройства - тепловое хаотич­ное движение электрически заряженных частиц. Резисторы, транзисторы, элек­тронные лампы, колебательные контуры, даже провода, короче говоря, весь ра­диоприемник от антенны до головки громкоговорителя создает шумы. Особен­но опасен шум антенны, входного устройства и первого усилительного каска­да, потому что он усиливается всеми остальными каскадами приемника. Созда­ют шум и индустриальные помехи, имеющие широкий диапазон частот, а по­тому попадающие в полосу пропускания приемника, сигналы мощных радио­станций, а также радиоизлучение солнца и даже Галактики. Все шумы накла­дываются на принимаемый сигнал и снижают реальную чувствительность при­емника. Поэтому чувствительность принято характеризовать наименьшим уров­нем входного сигнала, обеспечивающим на выходе УПЧ заданное соотношение­сигнал-шум. Однако в радиолюбительской практике, а также при измерений параметров радиовещательных приемников чувствительность часто характери­зуют таким наименьшим уровнем сигнала на входе приемника, при котором обеспечивается стандартная выходная мощность приемника 50 мВт при задан­ном соотношении сигнал-шум и максимальном усилении УЗЧ, т. е. учитывает­ся и шум УЗЧ.

В качестве стандартной мощности приняты 50 или 5 мВт - для приемни­ка с максимальной выходной мощностью до 150 мВт. Однако измерять непо­средственно мощность неудобно, поэтому измеряют выходное напряжение. Зная номинальное сопротивление Яном звуковой катушки громкоговорителя (оно ука­зано в технической документации на громкоговоритель), по формуле Uвых = ~~ v PRkom или по графику на рис. 61 можно определить выходное напряже­ние, соответствующее мощности 50 мВт.

Рис. 61. Зависимость выходно­го напряжения от полного соп­ротивления звуковой катушки

Измеряют реальную чувствительность в экранированной камере, исключа­ющей наведение посторонних сигналов на антенный вход приемника. В люби­тельских условиях роль такой камеры в какой-то степени может играть ком­ната в современном панельном доме, стены которого пронизаны металлической арматурой. На вход радиоприемника от ГСС через согласующее устройство по­дают высокочастотный сигнал. При этом качество согласования выхода гене­ратора со входом приемника играет решающую роль. (Схемы эквивалентов ан­тенны показаны на рис. 57.) Выходное сопротивление генератора ГСС-6 (Г4-1) при использовании внешнего делителя равно внутреннему сопротивлению это­го делителя: на зажиме «10» - 80 Ом, на зажиме «1» - 8Ом, на зажиме «0,1» - 0,8 Ом. При соединении эквивалента антенны с зажимом «10» внешнего дели­теля резистор R 3 может отсутствовать; то же будет и при присоединении эквивалента антенны непосредственно к выходному гнезду генератора ГСС-6 (без­выносного делителя). При подключении эквивалента к зажиму «1» внешнего делителя сопротивление резистора R 3 должно составлять 80 - 8=72 Ом, при подключении к зажиму «0,1» 80 - 0,8 = 79,2 Ом. При измерении чувствитель­ности в УКВ диапазоне выходное сопротивление ГСС обычно равно 75 Ом, поэтому надо пользоваться эквивалентом антенны, схема которого показана на рис. 57,г (без дополнительных сопротивлений). При использовании генератора поля (см. рис. 58) рамку надо присоединять к вы­ходному гнезду генератора, а не к вынос­ному делителю. Эквивалент антенны дол­жен быть тщательно экранирован, нахо­диться непосредственно у антенного ввода радиоприемника и подключаться к нему стандартным разъемом. Экран эквивалента соединяют с зажимом «Земля» приемника проводником длиной 10 - 20 мм, а выносной делитель генератора подключают к экви­валенту короткими проводниками. Только при соблюдении таких условий можно из­мерить чувствительность приемника с до­статочной точностью.

К звуковой катушке головки громкоговорителя или ее эквиваленту под­ключают индикатор выхода, а лучше - электронный вольтметр, реагирующий на среднеквадратичное значение переменного напряжения. При измерении на­пряжения шумов, форма сигнала которых хаотична, градуировка вольтметра, реагирующего на амплитудное или средневыпрямленное напряжение, будет не­верна. Но можно обойтись и обычным вольтметром, так как погрешность из­мерения чувствительности зависит главным образом от точности определения выходного напряжения ГСС, которая редко бывает лучше 10%.

Измерения производят в трех точках диапазона: на краях и в середине. Приемник настраивают на нужную частоту, а регулятор громкости - на мак­симум (регулятор полосы пропускания УПЧ устанавливают в положение на­иболее широкой полосы; это же относится и к регуляторам тембра). В ГСС включают AM частотой 1000 Гц и глубиной 30%. Настраивают ГСС на часто­ту радиоприемника по максимальному отклонению стрелки индикатора выхода. Затем регулируют уровень выходного напряжения ГСС таким образом, чтобы индикатор выхода зафиксировал напряжение, соответствующее стандартной вы­ходной мощности. Чувствительность приемника будет равна выходному напря­жению ГСС (в микровольтах), снятому по шкале аттенюатора.

Далее выясняют, реальная ли это чувствительность, т. е. соответствует ли она заданному соотношению сигнал-шум. Ведь индикатор выхода измеряет ре­зультирующее напряжение, складывающееся из напряжений сигнала U e , шумов U m и внешних помех U п. Чтобы измерить эти составляющие, модуляцию ГСС выключают. Показания индикатора выхода при этом заметно уменьшатся и будут соответствовать значению (U 2 m + U 2 n ) -2 , так как в это время напряжение звуковой частоты на нагрузке детектора приемника от сигнала ГСС отсутствует. Затем измеряют напряжение собственных шумов приемника, для чего за­мыкают накоротко антенный вход приемника. Теперь внешние помехи уже не попадают в приемник, и показания индикатора выхода определяются только внутренними шумами. Вычисляют отношение (U 2 m + U 2 u / U m ) -2 . Если оно хотя бы в 4 раза меньше требуемого отношения сигнал-шум, то действием внешней помехи U n пренебрегают и полученное ранее значение чувствительности явля­ется реальной чувствительностью приемника. Если же это отношение более задан­ного, то это означает, что шумы приемника надо уменьшить. Для этого умень­шают усиление приемника, например, регулятором УЗЧ, замыкают антенный вход приемника и измеряют напряжение U m внутренних шумов. Затем не из­меняя положения регулятора громкости приемника, размыкают антенный вход, включают в ГСС модуляцию и регулируют его выходное напряжение до тех пор, пока индикатор выхода приемника отметит напряжение, соответствующее стан­дартной выходной мощности 50 мВт. Определяют новое отношение U e ! U m или выражение с учетом напряжения помех U n Если оно соответствует задан­ному значению, то получается значение реальной чувствительности приемника. Если оно опять хуже заданного, то снова уменьшают усиление приемника и т. д.

При измерении чувствительности УКВ радиовещательных приемников с ЧМ ТСС должен обеспечивать следующие параметры ЧМ: частота модуляции 1000 Гц, девиация частоты (полоса качания) 15 кГц.

Какой же чувствительностью должен обладать радиоприемник? Это зависит -от его назначения и класса. Приемники, предназначенные для любительской KB радиосвязи, имеют очень высокую чувствительность (около 1 - 3 мкВ). Это предельная чувствительность приемника, работающего с обычной антенной, так как слишком велики воспринимаемые ею внешние помехи. Чувствительность радиовещательных приемников высшего класса в диапазонах ДВ, СВ и KB 50 мкВ, а для более низких классов 200 - 300 мкВ. Если прием ведется на внутреннюю магнитную антенну, то чувствительность приемника должна на­ходиться в пределах 1 - 3 мВ/м. Чувствительность радиовещательных прием­ников в УКВ диапазоне составляет 10 - 30 мкВ, а у радиовещательных при­емников высшего класса даже 5 мкВ.

Отметим, что чаще всего измерения дают завышенный результат, т. е. действительная чувствительность приемника хуже, чем показывают приборы. Ос­новной источник погрешности измерений, особенно у чувствительных приемни­ков, проникновение сигнала на вход приемника помимо эквивалента антен­ны. И еще одно замечание: если измерение чувствительности дает весьма низ­кий результат, к тому же обнаружена большая неравномерность чувствитель­ности по диапазону, а предварительные измерения коэффициентов усиления от­дельных блоков приемника показали нормальную работу, то причиной низкой чувствительности супергетеродинного приемника будет скорее всего плохое со­пряжение настроек входных и гетеродинных контуров.

Любое электронное устройство, а тем более такое сложное, как стереорадиоприемник, чтобы производитель имел законное право его продавать, должно удовлетворять длинному перечню специальных требований. Однако для покупателя обычно доступна только часть параметров, приводимая в перечне технических характеристик. Среди них всегда и в первую очередь - чувствительность, затем избирательность, отношение сигнал/шум, коэффициент нелинейных искажений и ряд других. По этим причинам покупающему многоканальный AV-ресивер, классический тюнер или автомагнитолу, дабы не сожалеть впоследствии о качестве приема, требуется подойти к оценке своего будущего приобретения во всеоружии.

Чувствительность


Зависимости выходного сигнала, шумов и стереоразделения от уровня входного сигнала

Чувствительность характеризует способность радиоприемника принимать слабый радиосигнал. Это минимальный входной сигнал, при котором обеспечивается выходной сигнал требуемого уровня при оговоренных условиях, обычно это отношение сигнал/шум. При взгляде на таблицу параметров в инструкции бросается в глаза то, что наиболее подробно изготовители приводят данные о чувствительности: может приводиться до пяти ее значений с комментариями, определяющими условия измерения. Тут и максимальная чувствительность, и чувствительность в режиме прима "стерео" и "моно". Какая из них самая главная? На что обращать внимание в первую очередь? Достижение какого ее значения может служить залогом высокого качества приема? А может, это все от лукавого?
Обычно обязательно присутствует значение чувствительности, которую по аналогии с ГОСТом можно назвать максимальной, обозначаемую как usable sensitivity (некоторые фирмы в русскоязычных вариантах инструкций называют ее реальной чувствительностью) и с указанием, что значение получено при измерении в соответствии со стандартом IHF. Этот американский стандарт оговаривает параметры и условия измерения приемников FM-сигнала и именно в соответствии с его требованиями приводятся значения чувствительности, выраженные в dBf. Мы уже писали, что dBf, или в русском написании дБф, относительная величина, определяющая чувствительноть в децибелах относительно напряжения, соответствующего фемтоватту на нагрузке 75 Ом. Собственно сам фемтоватт - мощность ничтожная, в 10 -15 меньше ватта, т.е. 1, деленная на 1000000000000000 (миллион миллиардов). Для наглядности пояснений мы приводим номограмму, которая позволяет легко сравнить значения чувствительности в мкВ и дБф.
Чтобы понять, почему отличаются значения чувствительности, обратимся ко второму рисунку, где показаны зависимость выходного сигнала, шумов и сререоразделения от уровня входного сигнала. Конечно, это графики реального приемника и аналогичные графики для других моделей могут отличаться числовыми значениями, но характер зависимостей сохраняется всегда.
Некоторые изготовители просто точно указывают условия измерений (например, при уровне искажений 3% и отношении сигнал/шум 26 дБ), что чаще всего соответствует требованиям этого американского стандарта. Эта чувствительность характеризует способность приемника принять слабый сигнал, который ни в коей мере нельзя рассматривать как музыкальный источник, а только для приема речевых сообщений. Тем более, и это практически никогда не уточняется в технических характеристиках, что это чувствительность при приеме моносигнала. На нашем графике этой чувствительности соответствует значение А. Реально послушать музыку можно только при значительно большем отношении сигнал/шум, и такую чувствительность также приводят (хотя и не все производители, предлагаем вдумчивому читателю решить почему), указывая отдельно ее значения для приема моно- и стереосигнала. Называют ее в англоязычных инструкциях quieting sensitivity или просто sensitivity. Иногда измерения производят при отношении сигнал/шум 46 дБ, иногда - 50 дБ. На графике ее значения для отношения сигнал/шум 50 дБ отмечены для моно- (В) и стереосигнала (С). Обратите внимание на то, что при достижении требуемого отношения сигнал/шум (50 дБ) в случае С еще практически отсутствует стереоразделение. Реально приемное устройство с подобными характеристиками начнет хорошо принимать стереосигнал при уровне на входе более 45 дБф. Качественный прием стереосигнала и представляет всегда наибольший интерес. В лучших моделях тюнеров чувствительность (стерео, отношение сигнал/шум 50 дБ) не бывает больше чем 17 мкВ (36,1 дБф), а в массовых моделях для высококачественного приемника такая чувствительность не должна превышать 28–30 мкВ. Некоторые изготовители, ориентированные на рынок немецкоязычных стран Европы, приводят чувствительность, измеренную по германскому стандарту (DIN), и в силу некоторых отличий условий измерений ее значения в этом случае получаются на 10–15 мкВ больше.

Отношение сигнал/шум

Как уже стало понятно из обсуждения чувствительности, отношение сигнал/шум на выходе радиоприемного устройства зависит от уровня принимаемого сигнала. При малых уровнях шум вообще может подавить сигнал, т.е. стать больше его. Это одна из особенностей приема сигнала с частотной модуляцией. Поэтому в описаниях приводится отношение сигнал/шум (signal to noise ratio) для достаточно сильного сигнала (обычно порядка 65 дБф), когда оно уже достигает своего максимального значения. Для моносигнала оно составляет порядка 70 дБ, для стерео - обычно на 5 дБ меньше. В лучших моделях может достигаться значение этого отношения на 3–5 дБ выше.

Избирательность

При радиоприеме необходимо выделить только требуемый сигнал, а все мешающие подавить. Такими вредными могут быть сигналы соседних радиостанций. Ответственным за прием требуемого сигнала и подавление посторонних в приемнике является усилитель промежуточной частоты (ПЧ), и в современных моделях конкретно за подобную селекцию отвечает керамический фильтр ПЧ. Ни один такой фильтр не является идеальным, то есть таким, который абсолютно без искажения передает все сигналы в полосе пропускания и полностью подавляет помеху за ее пределами. Всегда существует некая область частот на границе (когда больше, когда меньше), в которой уже ослабляются составляющие спектра принимаемого сигнала, но еще недостаточно подавляется помеха. Теоретически спектр ЧМ-сигнала очень широк и общепринятое значение полосы пропускания фильтр ПЧ около 400 кГц является компромиссом между качеством принимаемого сигнала (см. ниже о нелинейных искажениях) и количеством радиостанций, которые могут уместиться в отведенном для радиовещания участке диапазона, не мешая друг другу. Избирательность, значение которой приводится в описании, показывает, насколько ослабляется нежелательный сигнал по отношению к принимаемому. Хорошим считается значение более 50 дБ при частоте мешающего сигнала на 300 кГц меньше и больше частоты полезного сигнала. Иногда, для пущего эффекта, изготовители приводят значение избирательности при расстройке на 400 кГц, и тогда значение получается децибелов на 10 больше.

Нелинейные искажения

Уровень нелинейных искажений в приемнике сигналов с частотной модуляцией зависит не только от схемы выходных низкочастотных каскадов, но и в немалой степени от ширины полосы пропускания по промежуточной частоте. В серьезных приемниках она может быть переменной (чаще всего переключаться) для обеспечения компромисса в случае приема слабого сигнала, между искажениями и приемлемым уровнем шумов. Считается, что для достижения низкого уровня искажений линейный участок характеристики частотного детектора, который осуществляет преобразование ЧМ-сигнала в звуковой, должен быть не менее 1 МГц. Если теперь сравнить это с полосой по ПЧ, то станет понятно, почему уровень КНИ для вполне пристойных по остальным параметрам устройств может достигать 0,8% (в режиме приема стерео). В лучших приемниках значение КНИ не превышает 0,1% для моносигнала и 0,15 для стерео.

Разделение каналов

На страницах журнала мы уже рассказывали о некоторых параметрах, определяющих качество приема стереопередач, но наиболее существенным для правильного воспроизведения стереопанорамы является достижение необходимого разделения каналов. На нашем графике видно, что разделение, как и другие параметры зависит от уровня принимаемого сигнала. Кроме того, оно зависит также и от симметрии частотного тракта ПЧ. Значение в 40 дБ является практически предельным и по представлениям 50-х годов, когда и разрабатывались системы стереовещания, вполне достаточным. Заметим, что даже измерительные стереомодуляторы не обеспечивают большего разделения. Иногда для обеспечения работы стереодекодера при низком отношении сигнал/шум используются специальные схемы как автоматические, так и включаемые вручную, искусственного уменьшения разделения на высоких частотах. Обозначаются такие устройства HIGH BLEND. Это позволяет снизит шумы до приемлемого уровня и относительно немного потерять в стереопанораме.

Другие параметры

Часто в техническом описании приводят значение неравномерности частотной характеристики выходного сигнала в полосе 30 Гц – 15 кГц и подавление по ПЧ. Для современных приемников хорошей можно считать неравномерность ±1 дБ, хотя встречаются модели и с завалом до 3 дБ на краях диапазона. Подавление по промежуточной частоте интересно тем, что возможная помеха на такой частоте наиболее сильно влияет на качество приема. Один пример. Лет двадцать тому назад, еще в Советском Союзе появился в продаже приемник одной известной японской фирмы, выполненный по схеме с двумя промежуточными частотами. Такая схема обеспечивает лучшую избирательность по альтернативным каналам приема. Однако в связи с тем, что первая (высокая) промежуточная частота точно соответствовала частоте, на которой вещала в диапазоне УКВ в Москве радиостанция "Маяк", то он только ее здесь и принимал…


Радиоприемная часть в современной аппаратуре с виду проста до предела: высокочастотный блок да пара микросхем

Все сказанное относится к приему в диапазоне FM (или УКВ). Для диапазонов АМ (средних и длинных волн), вещание в которых можно рассматривать только как информационное, обычно приводятся не больше двух-трех параметров: чувствительность, избирательность и отношение сигнал/шум. Если чувствительность измеряется на зажимах антенного входа, то приводится ее значение в мкВ. Однако чаще, поскольку практически все современные стационарные приемники и тюнеры комплектуются рамочной антенной, указываются значения в мкВ/м (микровольт на метр) именно для нее. Типичным значением является 300 – 400 мкВ/м, а для электрического входа антенны 30–40 мкВ. Избирательность по соседнему каналу (при АМ-вещании это расстройка всего на 9 кГц) редко превышает 30 дБ, а массовые приемники имеют значения на 3-5 дБ меньше. В то же время отношение сигнал/шум достигает вполне приемлемого значения в 50 дБ при уровне сигнала всего 100 мкВ/м.
К сожалению, приходится констатировать, что аналоговые приемники все больше отходят на второй план, а потому и существенно упрощаются. Обычно это отдельная плата в составе ресивера (см. фото), которая содержит радиочастотный входной блок и пару-тройку универсальных микросхем (см. фото). Конечно, и такой набор обеспечивает всю обработку (усиление, детектирование и декодирование) аналогового сигнала, но качество, как мы видим страдает. Наши наблюдения показывают, что с каждым новым поколением AV-ресиверов, производители все меньше и меньше выделяют средств на их приемную часть. Часто новые ресиверы имеют и параметры чуть-чуть похуже и поменьше функций. С другой стороны устройства для приема цифрового радио пока выпускаются в виде отдельных блоков, а для их цифровых выходов в последних моделях многих AV-ресиверов уже предусмотрен дополнительный вход (оптический или коаксиальный) обозначенный как DAB.

УДК 621.396.62.089.52 C.B. Мелихов, В.А. Кологривов

Оценка чувствительности радиоприемников с настроенными антеннами

Получены выражения для оценки чувствительности радиоприемников с настроенными антеннами при учете собственных и внешних шумов, характеризуемых коэффициентами шума

Введение

В современных литературных источниках внешние для радиоприемника шумы характеризуют зависящими от частоты коэффициентами шума . Однако расчетные соотношения для оценки чувствительности приемников с учетом собственных и внешних шумов или не приводятся , или ошибочны .

Целью данной работы является вывод расчетных соотношений для оценки чувствительности радиоприемников с настроенными антеннами с учетом собственных и внешних шумов, характеризуемых коэффициентами шума.

1. Оценка чувствительности приемника при аналоговой связи

Чувствительность приемника характеризует его возможность принимать слабые радиосигналы.

Реальная чувствительность приемника при аналоговой связи - это минимально допустимое значение мощности радиосигнала на входе приемника Рс вх0 (либо минимально допустимое эффективное значение ЭДС радиосигнала в антенне Ес, либо минимально допустимое эффективное значение напряженности электромагнитного поля радиосигнала в точке приема ес), при котором на выходе приемника в исполнительном устройстве (ИУ) обеспечивается заданное отношение средней мощности сигнала S к средней мощности шума N (Увых = S/N = = SNR, SNR - Signal to Noise Ratio) .

Параметр SNR характеризует качество приема при аналоговой связи. При малых потерях в фидере, подводящим сигнал от антенны ко входу радиотракта (РТ) приемника (ко входной цепи), или при отсутствии фидера (когда согласованная антенна подключается непосредственно ко входу приемника, имеющему в режиме согласования входное сопротивление Двх) значения ес, Ес, Рсвх0 связаны между собой следующим образом:

Если приемники имеют настроенные антенны, что характерно, например, для приемников мобильных систем связи, то их чувствительность оценивают параметром Рс вх0 .

Реальная чувствительность Рс вх0 зависит от уровня собственных шумов приемника; от уровня внешних шумов (помех); от величины потерь в фидере приемника; от полосы пропускания РТ приемника, от величины увых. Заметим, что коэффициент усиления приемника должен быть достаточным для того, чтобы увеличить принятую мощность Рс вх0 до величины, при которой нормально работает ИУ приемника.

При выводе формулы для оценки чувствительности приемника удобно привести мощность полезного сигнала и все шумовые мощности к выходу РТ (к точке «а», рис. 1).

Поскольку отношение сигнал/шум на выходе детектора Увыхд = УВЬ1Х (УНЧ практически не ухудшает отношение сигнал/шум), то значение увыхРТ = УВхД можно найти для диодного амплитудного детектора (АД) и диодного частотного детектора (ЧД), используя следующие формулы, определяющие изменение отношения сигнал /шум при детектировании :

где тср =0,3 - средняя величина индекса модуляции AM сигнала; Мчм = /д max / Fa -

индекс частотной модуляции.

Уъъа. РТ - Уъу. . Д

Рис. 1 - Структурная схема приемника

При гетеродинном (синхронном или асинхронном) детектировании (ГД)

УвхГД = УвыхГД (4)

Собственные шумы радиотракта (РТ) приемника характеризуют коэффициентом шума Nuр. Мощность шумов РТ, приведенная к выходу РТ (к точке «а», см. рис. 1) :

^шРТ = ^РТ^шО^пр ~ !) . (5)

где кРТ - коэффициент усиления по мощности РТ приемника; Рш0 = кТ0Вш - номинальная мощность теплового шума (мощность, поступающая от шумящего сопротивления Нш в согласованную нагрузку R = Дш; величина Рт0 не зависит от Дш); k = 1,38 Ю-23 Дж/К - постоянная Больцмана; Г0 = 290К (считается, что комнатная температура 17 °С); Вт =1,1Вду - шумовая полоса приемника, Гц; BRF - полоса пропускания приемника для сигнала на радиочастоте (Radio Friqency).

Коэффициент шума фидера как пассивного устройства (при согласовании его входа с антенной, а выхода - со входом РТ) равен его потерям Ыф = т]л = 1/Аф, где k0 - коэффициент передачи фидера по мощности. Тогда мощность собственных шумов фидера, приведенная к выходу РТ:

РщФ ~ ^РТ^Ф-^шО^П _ кргркфРш0

Мощность внешних шумов, приведенная к выходу РТ при условии пренебрежения шумами от сопротивления потерь антенны (Дпот = 0):

= /грТйфРш0 -- = (гр^кф Рш0 (ЛГ2 - 1),

где = (гатм + Гпром + ггал + ^зем) - суммарная температура внешнего шума; Татм - температура атмосферного шума; Т^^ - температура промышленного шума; Тгал - температура галактического шума; Тзем - температура теплового шума Земли (для слабо направленной

приемной антенны принимают 71зем ~Т0 = 2,9 102К);

1 + ХГ|/Г0- (8)

результирующий коэффициент внешнего шума.

Атмосферные (грозовые) и промышленные помехи носят импульсный характер, а интенсивность их спектральных составляющих имеет падающий характер с повышением частоты (рис. 2). Однако в пределах полосы приемника интенсивность спектральных составляющих импульсных помех можно считать постоянной. Поэтому импульсные атмосферные (грозовые) и промышленные помехи называют атмосферными и промышленными шумами.

Рис. 2 - Приблизительные зависимости коэффициентов внешнего шума или температур внешнего шума Т(= Тп(Ы1 - 1) от частоты для слабонаправленной приемной антенны: 1 - атмосферный шум днем; 2 - атмосферный шум ночью; 3 - промышленный шум в особо тихих местах; 4 - промышленный шум в малом городе; 5 - промышленный шум в большом городе; 6 - галактический шум; 7 - шум Земли

Интенсивность внешних шумов от различных источников, принимаемых слабонаправленной антенной, можно характеризовать температурами внешнего шума (Т¡) или коэффициентами внешнего шума (ЛГ4) (см. рис. 2). Удобнее при расчетах пользоваться величинами

коэффициентов шума, выраженными в децибелах: [дБ] = 101ё(1 + Тг/Т0) .

При наличии внешних шумов от различных источников необходимо для определенной радиочастоты f оценить результирующий коэффициент внешнего шума Л^ с использованием зависимостей, изображенных на рис. 2. Для этого преобразуем выражение (8) следующим образом:

" атм + пром гал + _

коэффициент атмосферного шума, дБ; Л"щ^ - коэффициент промышленного

шума, дБ; ЛГгал - коэффициент галактического шума, дБ; АГзем - коэффициент шума Земли, дБ; в - число слагаемых, учитываемых в квадратных скобках формулы (9). Полная мощность шума на выходе РТ приемника с учетом выражений (5)-(7):

-^ш.выхРТ - -РшРТ + ^шФ + ^ш.внеш - ^Г^ф-^шО

Мощность сигнала на выходе РТ, соответствующая реальной чувствительности Рс вх0:

сРТ - ^РТ^Ф^с.вхО

Поскольку

УвыхРТ=р-, (12)

то из уравнений (10)-(12) следует, что реальная чувствительность приемника с согласованной антенной:

с.вхО _ УвыхРТ-^шо

где на основе выражения (9) с учетом того, что Ызек =(1 + Т0/Т0) = 2 (или Язем = 3 дБ, см. рис. 2)

Ю0-1*.™ +1о°-ш-р«» +юол^« +10одз

100,1N„„ +1()0,Шпроы А1П0,Ш„

Если частота радиосвязи / >~ 520 МГц, уровни внешних атмосферных, промышленных (даже в большом городе) и галактических шумов пренебрежимо малы. При этом 7Уатм = = ^пром = ^гал = 0 дБ (см. рис. 2), следовательно, = - (4 -1) = 2Узем = 2 . Такой же величине коэффициента внешнего шума соответствует случай, когда приемник находится далеко от источников промышленных шумов (в сельской местности), а />- 250 МГц. В этих случаях выражение для оценки реальной чувствительности приемника упрощается и имеет вид

^с.вхО Увых РтАпо

2. Оценка чувствительности приемника при цифровой связи

При цифровой связи качество приема оценивают вероятностью битовой ошибки, которую еще называют частотой появления битовой ошибки (BER - Bit Error Rate). Параметр BER для различных видов цифровой манипуляции однозначно связан с нормированным отношением качества для цифровой связи Eb/N0 где Еь - энергия сигнала на 1 бит; N0 - спектральная плотность мощности аддитивного белого гауссовского шума в полосе 1 Гц, а отношение Eb/N„ также однозначно связано с отношением средней мощности сигнала к средней мощности шума на выходе РТ приемника увьпсРТ = (S / N)BbIX РТ = (S7Vi?)RbIX ^ .

Поэтому чувствительность приемника при цифровой связи оценивается по формуле (13) или (15) после того, как определена необходимая величина увыхРТ из требуемой величины параметра BER.

Таким образом, в данной работе получены расчетные соотношения для оценки чувствительности радиоприемников с настроенными антеннами с учетом собственных и внешних шумов, характеризуемых коэффициентами шума.

Под чувствительностью понимается способность радиоприемного устройства принимать слабые сигналы. Она определяется минимальной величиной входного сигнала, которая обеспечивает нормальное функционирование исполнительного устройства при заданном превышении сигнала над помехой. Если чувствительность приемника ограничивается собственными шумами, ее можно оценить реальной или предельной чувствительностью, коэффициентом шума и шумовой температурой. Реальная чувствительность равна величине э.д.с. (номинальной мощности) сигнала в антенне, при которой напряжение (мощность) сигнала на выходе приемника превышает напряжение (мощность) помех в заданное число раз. Если мощность сигнала равна мощности помех на выходе линейной части приемника – предельная чувствительность .

Чувствительность радиоприемного устройства определяется уровнем внутренних и внешних шумов и помех э.д.с., приведенных к его входу, величина которых составляет

где – э.д.с. шумов и помех, обусловленных их влиянием извне на характеристики радиоприемного устройства;

– э.д.с. собственных шумов и помех, приведенных к входу радиоприемного устройства.

Влияние внешних шумов на чувствительность радиоприемного устройства в диапазоне частот различное и зависит от причин их возникновения. В диапазоне рабочих частот до 100 МГц наибольшее влияние оказывает средний уровень промышленных помех в городе (рис. 1.7). В данном диапазоне также большое влияние оказывают помехи, обусловленные атмосферными, грозовыми и космическими явлениями. Суммарное значение э.д.с. помех, наводимых в антенне, определяется выражением

где – отдельные источники э.д.с. помех.

Суммарное значение э.д.с. помех может быть определено по данным (рис. 1.7), где представлены их частотные зависимости в эффективной шумовой полосе частот, равной 1 кГц.

Уровень внешних помех, наводимых в согласованной антенне, определяется выражением

где – суммарное значение помех, наводимых в антенне в мкВ/м;

– действующая высота антенны в метрах;

– шумовая полоса радиоприемного устройства в кГц.

В диапазоне частот свыше 100 МГц основным видом помех являются внутренние шумы радиоприемного устройства и шумы антенны. Шумы антенны обусловлены приемом шумовых излучений космического пространства, атмосферы земли и ее поверхности, а также тепловым шумом сопротивления потерь r п антенны. В инженерной практике за шум антенны принимают э.д.с., наводимую в полном сопротивлении антенны R А нагретого до величины, называемой эффективной шумовой температурой антенны T А. Эквивалентная схема настроенной антенны с учетом наводимых шумов и помех представлена на рисунке (рис. 1.8).


Рис. 1.8 - Эквивалентная схема настроенной антенны

Величина уровня шума в антенне определяется формулой Найквиста

где k – постоянная Больцмана равная 1.38×10 - 23 Дж/град;

П Ш – шумовая полоса радиоприемного устройства;

T А – абсолютная температура антенны в К 0 .

Величина температуры T А зависит от формы диаграммы направленности антенны, от характера шумовых источников, действующих в зоне радиоприема, от диапазона рабочих частот (рис. 1.9) и т.д.

Рис. 1.9 - Зависимость шумовой температуры приемной антенны от частоты (1 – максимальная; 2 – минимальная)

Мощность шума антенны, поступающего на согласованный вход радиоприемного устройства, определяется величиной (1.14) и равна

Для оценки предельной чувствительности и шумовых свойств радиоприемного устройства используется понятие коэффициента шума N , определяемого как степень уменьшения отношения сигнал/шум на выходе линейного тракта по сравнению с этим соотношением на его входе при стандартных условиях измерения.

где – мощность сигнала на входе;

– рассеиваемая мощность, обусловленная тепловым шумом сопротивления эквивалентного генератора при T 0 = 290 K 0 ;

– мощность шума на выходе линейного тракта при определении коэффициента шума;

– мощность сигнала на выходе линейного тракта радиоприемного тракта.

Под линейным трактом понимаются все каскады приемного радиочастотного тракта до детектора.

Чувствительность приемного устройства в диапазоне метровых и менее длин волн в режиме согласования при заданном отношении сигнал/шум на выходе линейного тракта определяется выражением:

где – относительная шумовая температура антенны;

Т 0 стандартная температура(290 К);

– коэффициент шума приемника (1.16);

– коэффициент различимости на выходе линейного тракта приемника.

В единицах напряжения:

где r А – сопротивление антенны (эквивалента антенны).

При определении требований к приемному устройству по шумовым свойствам на практике определяют допустимым коэффициентом шума .

В диапазоне ДВ, СВ и КВ, если задана э.д.с., наведенная в антенне:

Если чувствительность определяется напряженностью поля сигнала

Для диапазонов метрового и менее длин волн:

где K рф коэффициент передачи мощности фидерной линии (волновода).

Исходя из анализа предыдущих выражений, можно сделать следующие выводы:

1. Если уровень помех в антенне больше уровня шумов приемника, то требования к шумовым параметрам приемника не предъявляются.

2. В диапазоне частот более 100 МГц необходимо принять меры к уменьшению коэффициенту шума приемника, полосе пропускания и т.д.

3. На частотах более 1 ГГц уровнем внешних шумов можно пренебречь.

Один приятель спрашивает у другого:
- А почему вот тот, разговаривающий по сотовому человек,
постоянно приседает и снова встает?
- Он волну ловит или снайперов боится.
Анекдот на злобу дня (с)

Введение

Каждому хочется, что бы его сотовый телефон был действительно мобильным. Приятно, если твой аппарат достойно принимает сигнал в любом месте и говорить ты можешь без цифровых захлебываний и прерываний. В конце концов, мобильная связь должна давать такую свободу. Большинство цивилизованных стран имеют 100% покрытие. Это значит, что в любой точке страны вы можете принимать и совершать вызовы. Это своеобразный супремум связи. Для России такая возможность не видна пока даже на горизонте. Земли у нас так много, а людей так мало, что покрывать связью каждый куст оказывается экономически нецелесообразно. Вот и приходится операторам думать, где и как ставить очередную базовую станцию. Разумеется, вероятность того, что оборудование появится в тайге, значительно меньше, чем около крупной автомобильной или железнодорожной дороги. В результате не последним аргументом при покупке сотового телефона становится чувствительность и мощность его принимающего и передающего контуров. Вспоминается заря развития сотовой связи, когда качественные трубки действительно давали мобильность своим пользователям, а обладатели упрощённых решений испытывали проблемы. Сейчас крупные города покрыты очень хорошо, но все равно на память приходят моменты, когда ваш собеседник просит вас подойти к окну или найти место, где связь лучше. Радует одно – с каждым годом количество базовых станций непрерывно растет и территория охвата увеличивается. Процесс этот необратим. Некоторое время назад я посетил удаленный район Тверской области. Там мы столкнулись с ситуацией, когда "навороченные" сотовые телефоны отказывались работать. Сеть то появлялась, то исчезала. Среди нас был счастливый обладатель раритета Siemens S35. Он говорил с любого места. Это явным образом свидетельствовало в пользу того, что все трубки разные и раньше умели делать настоящие боевые мобильники. Все трубки используют различную аппаратную базу и соответственно, качество связи в экстремальных условиях (по низкому уровню сигнала) обеспечивают разное. Время прошло, а тот случай из памяти не дает спокойно спать. Я дал себе зарок следующий сотовый аппарат покупать только при условии, что он будет гарантировать мне качественный прием. Время прошло, а новый мобильник так и не куплен. Сегодняшний материал должен приблизить нас к пониманию проблемы «чувствительности» сотового телефона. Его прочтение не гарантирует вам бесперебойной связи, но разложит по полочкам все технические аспекты, которые напрямую связаны с приемником и передатчиком вашей трубки. Так же вы узнаете, как не попасться на крючок жуликов.

Немного теории

Итак, чтобы перейти к предметному разговору на сегодняшнюю тему, нужно разобраться с константами. Для начала, все ниже написанное применимо для GSM связи. Так как большинство российских пользователей выбирают именно этот стандарт, то мы берем на себя ответственность писать именно для них. Однако при должном уме и недюжинной смекалке вы можете провести аналогии для всех других видов мобильной связи. Где-то высказанное нами будет работать практически без метаморфоз, а иногда придется сойти с протоптанной тропки известного решения. В конце концов ноги растут из одного места. В данном случае из мобильного телефона. Теперь можно смело переходить к базовым теоретическим выкладкам. Любой мобильный телефон имеет в себе передатчик и приемник. Поэтому разговоры в чистом виде о чувствительности сотового телефона в некотором смысле не корректны. Нужно разделять мощность передатчика, реализацию антенны и чувствительность приемника. Разумеется, различные производители используют не совсем идентичные детали или аппаратную базу. Поэтому трубки работают по-разному. Кроме этого, некоторые конструктивные особенности мобильника – геометрия антенны и корпуса, ваше положение в пространстве и внешние факторы сказываются на качестве связи. Однако в этом хаосе есть несколько базовых установок, на которые мы можем опираться. Разумеется, это стандарты для сотовой связи. Они прописаны и подписаны много лет назад. Каждый разработчик обязуется выполнять и свято чтить их, так же как президент страны обещает не нарушать конституцию. В том и другом случае возможны некоторые нарушения, но удовольствия от нарушения никто не получает. Возможны санкции. Президенты в этом случае оказываются защищенными гораздо лучше. Например, решит хитрая азиатская или европейская компания создать мобильный телефон с супер мощной антенной. Казалось бы, и покупатели найдутся, и рекламные лозунги - «Наши антенны вещают так, что вас слышат в ближайшем созвездии» могут надломить психику конкурентов. Но вот продать такие трубки легально не получится. Всевозможные комитеты по стандартам завернут весь бизнес. Такая вот складывается ситуация.

Сотовый телефон существо почти живое. Он всегда пытается пообщаться с базовой станцией. Это происходит вне зависимости от желания владельца. Разумеется, если трубка находится во включенном состоянии. Базовая станция передает сигнал для трубки на частотах 935,2 – 959,8 МГц (важно! Речь идет о GSM900), а мобильный телефон вещает на частотах 890,2 – 914,8 МГц. Суровые математические расчеты говорят о том, что максимально возможное расстояние между сотовым телефоном и базовой станцией может составлять 35 км. Это связано с работой технологии TDMA – каждой мобильной станции выделяется тайм-слот в 0,577 миллисекунд (точнее говоря, работает отношение 15/26), за это время мобильная станция должна успеть ответить соте. Скорость распространения радиоволн конечная и хорошо известная - 300 тысяч км/с, максимальное расстояние вычисляется как простое перемножение времени на скорость. Вот так и получаются эти самые 35 км. Впрочем, если теоретическое вычисленное значение выглядит очень красиво, то в реальности всё обстоит несколько иначе. Для GSM-900 существует 5 классов мощности сотовых аппаратов: 1-й – 20 Вт, 2-й – 8 Вт, 3-й – 5 Вт, 4-й – 2 Вт и 5-й – 0,8 Вт. Реально мы не встречали ни одной носимой трубки с мощностью больше 2 Вт. Пробить расстояние в 35 км при таких характеристиках невозможно. Если увеличить мощность базовой станции достаточно просто – надо установить трансформатор помощнее и договориться с органами надзора, то дать каждому пользователю генератор или кислотный пятидесятикилограммовый аккумулятор за спину не представляется возможным. Против абонента сотовой сети играет буквально всё: погода, рельеф, инфраструктура и многое другое. Так что реальное расстояние, на котором связь возможна в каждом конкретном случае, достигается простым экспериментом с сотовым телефоном. Иными словами, вам дается самый реальный повод достоверно измерить «чувствительность» вашего сотового аппарата в полевых условиях. Помните, что измеренная вами величина будет крепко накрепко привязана к конкретному сотовому телефону и изменчивым погодным условиям. Взять пару трубок на тест в магазине мобильников вам, скорее всего, не позволят. Поэтому имеет смысл только одно действие – будьте наблюдательны. Допустим, вы оказались в зоне не совсем уверенного приема. Поспрашивайте у товарищей, как дела обстоят с их сотовыми переговорами. Такой опыт не является высшей гарантией успеха при покупке. Мы писали ранее, что даже в одной поставке трубки одной марки могут работать по-разному. Даже пайка роботом не может гарантировать абсолютно идентичного соединения проводников, что уж говорить о полупроводниках и однородности антенн.

Вижу, но совсем не слышу!

Наверно вы иногда наблюдали такую картинку на вашем сотовом телефоне, что логотип вашей сети на экране присутствует, а вызовы совершать практически не возможно. Ситуация является вашим спутником в условиях недостаточного сигнала. Некоторая инертность логотипа способна убить в абонентах все человеческое. Иногда картину усугубляет тот факт, что ваш мобильник выпал из сети, а трубка друга продолжает рисовать картинку, которая говорит, что связь на его трубке есть. Давайте разберемся с этим интересным фактом. Оказывается, не все так сложно и просто объяснимо. Итак, обратимся еще раз к работе сотовой сети. Известно, что для автоматического управления и включения трубки в общую организацию необходима информация об уровнях сигналов базовых станций. Каждый телефон с заданным промежутком времени измеряет уровень сигнала от базовой станции. Это делается независимо от того, говорите ли вы по трубке или она находится в режиме ожидания вызова. Для чего это делается? Зачастую трубка «видит» сразу несколько базовых станций (БС). Организация сети строится таким образом, что в один момент времени она может общаться (ваши разговоры проходят) только через одну БС. Мобильник меряет уровень сигнала от разных базовых станций и выбирает ту, которая «видится гораздо четче». Это логично и является базисным вектором работы сети. Сотовый телефон измеряет уровень входного сигнала на частотах, указанных системой. Не обязательно ближайшая сота станет вашей. Иногда вы подключаетесь к территориально более далекой станции, главное с более высоким сигналом. Возможно ли переключить аппарат на другую базовую станции? В обыкновенном режиме работы сотового телефона сделать это не представляется возможным. Если изменить прошивку и разрешить пользователю доступ к аппаратным настройкам, то это возможно.

Идем дальше. Трубка меряет мощность входного сигнала. Разумеется, сделать это без ошибки нельзя. Стандарты GSM предусматривают допустимую ошибку измерения при работе в обычных условиях в 6,3 раза (+/-4 дБ). Для «жестких» условий работы, будь то, например, очень низкая температура, стандарт разрешает сделать погрешность в 15,8 раза (+/-6 дБ). Все эти погрешности реально работают для полностью исправных трубок. Жить без них было бы очень сложно, так как производители мобильников физически не способны обеспечить эталонный замер входящей мощности. После того, как мы узнали о погрешности измерения мощности, остается перейти к конкретному примеру. Допустим, что вы со своей трубкой оказались в месте, где реальный уровень сигнала базовой станции равен -103 дБ. Настройки общей работы сети поставлены таким образом, что они сообщают трубке, что доступ к ней разрешен при уровне измеренного сигнала -105 дБ. Разумеется, тут и вылезают все наши погрешности. Приемник мобильника изготовлен так, что уровень сигнала занижается на 4 дБ. Измеренный трубкой сигнал составит -107 дБ. Итак, полностью рабочая и отвечающая всем стандартам трубка будет сброшена из сети, так как она не имеет права быть включенной в систему. Другой сотовый телефон имеет такую реализацию, что он будет завышать измеренный сигнал на 4 дБ. Он сумеет зарегистрироваться в сети и покажет ее логотип на экране. Скажем больше, что если фактический уровень сигнала для такой трубки будет составлять -108 дБ (по месту, где она находится), то аппарат все равно будет исправно регистрироваться в сети оператора. Вот вам и «чувствительность» сотовых аппаратов. Так что наличие логотипа на экране вашего телефона говорит о регистрации трубки в сети, но не гарантирует нормальной связи. Однако это все равно приятно. Попытка поговорить иногда может быть засчитана за сам вызов. Так что, уважаемые читатели, желаю вам иметь трубку с таким приемником и измерительным трактом, который постоянно будет завышать уровень мощности сигнала от базовой станции. Таким образом, мы полностью разрушили миф о том, что пользователи разных сотовых телефонов могут меряться уровнями сигнала, который отображается на экранах их мобильников. Действительно, такие разговоры ведутся только от глубокой безграмотности в вопросе. Впредь, когда у вас будут спрашивать об уровне сигнала и апеллировать к информации на экране трубки, то не стоит тратить время на пустые разговоры. Смысла нет сравнивать измеренную мощность входящего сигнала, а про «эталонные кубики» совсем стоит забыть. Как этот производитель телефона пересчитывает в них данные остается загадкой. Тратить свое время на ее раскрытие опять же не имеет смысла.

Пляски с сотовым

Любая дуплексная радиостанция, а сотовый телефон является частным случаем этого правила, использует антенну для приема и передачи сигнала. Этот факт является еще одним аргументом эфемерности понятия «чувствительности». Раздельное использование одного и того же элемента трубки влечет некоторый компромисс. Передатчик не должен фонить на приемник, а последний в свою очередь обязан не мешать первому. Все мы живем на планете Земля и полностью отвечаем физическим правилам, которые накладывает на нас природа. Поэтому глупо полагать, что одно электрическое устройство способно не мешать работе другого. В результате разработчики приходят к элементарному компромиссу. Именно он позволяет устройству функционировать так, что вы, абоненты, можете слышать голос своего собеседника в трубке. Кстати, Его Величество Компромисс зачастую делается в пользу приемника. Разумеется, можно было бы создать не дуплексную, а симплексную передачу - в один момент времени только в одну сторону, но такая связь бы не удовлетворила современные запросы пользователей. Бытует мнение, что если прикрыть антенну сотового телефона рукой, то разговоры станут четкими и бесшумными. Давайте разберем эту ситуацию. Действительно, если прикрыть антенну каким-либо предметом, то в подавляющем большинстве случаев уровень измеренного сигнала сотовым телефоном упадет. Мобильный аппарат устроен таким образом, что чем хуже он «слышит» соту, тем «громче» он ей отвечает. Соответственно мощность выходного сигнала будет расти. Его возможности пробивать вашу руку или другой предмет, который загораживает антенну, не безграничны. Кроме этого, базовая станция не будет поднимать мощность, так как она не знает, что пользователь чинит помехи ее сигналу и ее параметры просто не рассчитаны на это. Соответственно, все ваши действия носят больше деструктивный характер, когда вы прикрываете антенну сотового телефона рукой. Кстати, на уровень измеренного входящего сигнала влияет не только рука, но и металлические украшения на ней. При разговоре по мобильному телефону старайтесь держать вашу руку по возможности подальше от антенны. Так и здоровье сбережете и помех лишних не создадите. Отличной помехой для сотовой связи становятся железобетонные конструкции. Помните, чем короче волна, тем лучше она пронизывает их. Кстати, этим обусловлен (и не только этим) тот факт, что в центре города операторы любят использовать 1800 МГц диапазон. За городом в условиях плохой связи старайтесь подняться на всевозможные пригорки. Это действие убирает лишние физические помехи на пути электромагнитных волн от сотового телефона к базовой станции. Помните, что в диапазонах частот, используемых в сотовой связи, даже при небольшом, всего несколько сантиметров, или десятков сантиметров, перемещении антенны, или с течением времени, уровень сигнала может изменяться в 100 и даже в 1000 раз (на 20 – 30 дБ). Обязательно двигайтесь и ищите «удачные» места. Настал момент поговорить на самую темную тему мобильной связи – внешние и внутренние антенны. Трудно перечесть все байки и споры на эту тему. Речь пойдет только о штатных антеннах. Или тех, что уже установлены в ваших мобильных телефонах. Разумеется, дополнительные (выносные) антенны с бустерами, которые вы можете приобрести за отдельные деньги, существенно улучшают прием и передачу, но о мобильности приходиться забыть. Кстати, такие решения очень нравятся автолюбителям, так как таскать на себе их не приходится. Итак, внутренняя или внешняя антенна? Однозначного решения этой задачи нет. Если вы умеете решать волновые уравнения и проставлять граничные условия, то, получив истинные параметры вашего мобильника, вы сможете на компьютере моделировать ситуацию звонка в самых различных точках зоны покрытия. Несколько лет назад один американец поместил в сеть результаты своих расчетов. Они вызвали долгие споры. В результате он убрал их. А жаль, так как это единственный пример подобных расчетов. Опыт показывает, что современные встроенные антенны ничем не уступают внешним решениям. Жизнь существенно осложняют всевозможные доморощенные украшения, которые пользователи вещают на антенну. В результате антенна может работать в нештатном режиме и, может быть, даже навредить вашему здоровью, излучая преимущественно в сторону вашей головы.

Extended Cell

Однако не всегда оператор может ставить обыкновенные базовые станции для покрытия больших территорий. Представьте, например, пустынный или водный район. Экономически, а иногда и чисто физически разместить нужное количество БС просто не получается. Для GSM стандарта предусмотрена конфигурация соты, при которой дальность связи увеличивается до 70 км. Она называется Extended cell. При таком использовании оборудования количество разговорных каналов уменьшается до 3. Но оператор покрывает гигантские площади силами только одной станции.

Не так давно рядом с Санкт-Петербургом на Финском заливе один из операторов использовал Extended Cell. Абоненты могли видеть на экране своих мобильников название этого оператора с восклицательным знаком. Это означало, что трубка видела сеть, но не могла с ней общаться. Проблема решалась с использованием внешних направленных антенн, когда выходной сигнал аппарата усиливался. Таким образом, Extended Cell позволяет покрыть гигантские малолюдные территории. Впрочем, их применение находит все меньшую популярность. В Сибири такие соты не поставишь все равно, а курортные районы по своей сотовой нагрузке давно переплюнули центры мегаполисов по интенсивности телефонных переговоров. Extended Cell физически не могут обслужить такие места, да и требование дополнительной антенны не делают этому способу связи должной популярности.

Внимание, жулики

Каждому пользователю хотелось бы повысить «чувствительность» свого сотового аппарата. Злоумышленники готовы использовать это в своих планах по одурачиванию абонентов мобильных сетей. Легче всего обмануть человека, предоставив ему услугу, которую сложно проверить. А если ее стоимость окажется мала, то это просто клад для жулика. В результате на рынке появились «наклейки-усилители чувствительности для мобильных телефонов». Разумеется, они подходят ко всем типам трубок, реализуют их через интернет и стоят они смешных денег. Производитель этого продукта заявляет, что наклейка работает исключительно по законам физики и придает вашему телефону небывалую чувствительность. Складывается впечатление, что стикеры, заговоренные колдунами и оболваненные бубном, продавались бы тоже достаточно неплохо, но мошенники решили сыграть на серости толпы и массовости рынка. Чудотворные наклейки до сегодняшнего дня с огромным успехом продаются в интернете.

Создатели наклейки рекомендуют наклеить ее под аккумулятор. Логичный ход. Там наклейка не будет мешать и не помешает работать настоящей антенне. Кстати, на расчеты последней уходят огромные силы. Каждая антенна по-своему уникальна и общей панацеи для всего этого многообразия быть не может. Мошенники могут только расстроить работу вашей штатной антенны. Возможно, внести помехи и шумы. Сомнительно так же рекламное утверждение, что один стикер заменяет антенну длинной в метр. Необходимости в такой длине просто быть не может. Конечно, можно собрать метровую антенну, но это будет очень сложная и не очень нужная система. Одним словом, дурят нашего брата. Кстати, ноги у этой наклейки растут из Азии. Там действительно одно время продавали сотовые телефоны и специальные антенны в виде наклеек к ним. Однако от системы отказались, так как пользователи просто не могли их правильно наклеить. Важно было точно позиционировать стикер в нужной части мобильника. Задача оказалась непосильной. Так что не стоит тратить свои деньги и поощрять мошенников.

Заключительное слово

Сегодня мы разобрались с понятием «чувствительности» сотового телефона. Вывод можно сделать один. Чем ваша трубка качественнее собрана и чем лучше элементная база, тем проще вам будет говорить в зонах слабого приема. Если у вас есть возможность использовать выносные антенны с узкой диаграммой направленности, то попробуйте их в работе. Они действительно помогают иногда решить сложные ситуации со связью. Будем надеется, что через некоторое время сотовые операторы покроют весь Земной шарик и мы забудем об этой проблеме. Оставайтесь на связи!

Загрузка...
Top