Кодирование информации. Количество информации

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за 1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000 отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое необходимо для кодирования 1 уровня громкости

Время звучания (t)


Объем памяти для хранения данных 1 канала (моно)

I=f·b·t

(для хранения информации о звуке длительностью t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется I бит памяти)

При двухканальной записи (стерео) объем памяти, необходимый для хранения данных одного канала, умножается на 2

I=f·b·t·2

Единицы измерения I - биты, b -биты, f - Герцы, t – секунды Частота дискретизации 44,1 кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации

Основные теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".

Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т.е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду, измеряется в герцах (Гц). Обозначим частоту дискретизации буквой f.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации b , которое называется глубиной кодирования звука

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 b . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 b = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Задачи для самостоятельной подготовки .

1. Рассчитайте объём монофонического аудиофайла длительностью 10 с при 16-битном кодировании и частоте дискретизации 44,1 к Гц. (861 Кбайт)

2. Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1)0,3 2) 4 3) 16 4) 132

3. Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 13 3) 15 4) 22

4. Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 12 3) 13 4) 15

Вариант 1

Лабораторная работа

«Кодирование и обработка звуковой информации»

Цели:

образовательная
воспитательная –
развивающая –

Ход работы:

    Решите

Имя файла

f- частота дискретизации

k -глубина звука

t- время звучания

Тип файла

44,1 кГц

16 бит

1 мин

стерео

1.wav

8 кГц

8 бит

1 мин

моно

2 .wav

16 кГц

16 бит

1 мин

стерео

3 .wav

24 кГц

16 бит

1 мин

моно

4 .wav

32 кГц

16 бит

1 мин

стерео

для заданий 7-9

5.wav

Покажите заполненную частично таблицу учителю.

    Запустите звуковой редактор Audacity .

    Выполните обрезку звучания предложенного вам файла до 1 минуты, выделив нужный отрезок времени, выполните команду Правка - Обрезать по краям.

    Конвертируйте wav .

    В звуковом редактореAudacity Например

    Сравните

    Сдайте отчет учителю для проверки.

Вариант 2

Лабораторная работа

«Кодирование звуковой информации»

Цели:

образовательная - обеспечить формирование и использование учащимися знаний о кодировании звуковой информации с помощью компьютера, а также навыков по её обработке c использованием прикладного программного обеспечения;
воспитательная – воспитывать внимательность, аккуратность, самостоятельность;
развивающая – навыки использования прикладного программного обеспечения; умение решать информационные задачи.

Требования к оборудованию и ПО : наушники, звуковые файлы для учащихся, звуковой редактор Audacity , программа Звукозапись OC Windows .

Ход работы:

    Решите задачи из приведенной таблицы.

Найдите объем звуковой информации по формуле V = f *k *t , где

f - частота дискретизации, k - глубина звука, t - время звучания

Решение задач представьте в виде таблицы.

В столбце «Расчетный объем звукового файла» самостоятельно запишите ответы решенных задач. Ответ дать в мегабайтах.

Имя файла

f- частота дискретизации

k -глубина звука

t- время звучания

Тип файла

Расчетный объем звукового файла

Реальный объем звукового файла

44,1 кГц

16 бит

45 с

стерео

1.wav

8 кГц

8 бит

45 с

стерео

2 .wav

1 1,025 кГц

16 бит

45 с

моно

3 .wav

24 кГц

    Запустите звуковой редактор Audacity .

    Выполните обрезку звучания предложенного вам файла до 45секунд, выделив нужный отрезок времени, выполните команду Правка - Обрезать по краям.

    Конвертируйте предложенный вам файл в файл с расширением wav . Сохраните этот файл с этим же именем.

    В звуковом редактореAudacity создайте эффекты для предложенного вам звукового файла. Например , последние 10 секунд файла сделать с затуханием

    Разделите стереодорожку, а затем удалите одну из дорожек. Преобразуйте данный файл из стерео в моно. Сохраните данный файл с новым именем и расширением wav.

    Сравните объемы файлов. Заполните таблицу данными.

    Сдайте отчет учителю для проверки.

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за 1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000 отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое необходимо для кодирования 1 уровня громкости

Время звучания (t)


Объем памяти для хранения данных 1 канала (моно)

I=f·b·t

(для хранения информации о звуке длительностью t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется I бит памяти)

При двухканальной записи (стерео) объем памяти, необходимый для хранения данных одного канала, умножается на 2

I=f·b·t·2

Единицы измерения I - биты, b -биты, f - Герцы, t – секунды Частота дискретизации 44,1 кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации

Основные теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".

Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т.е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду, измеряется в герцах (Гц). Обозначим частоту дискретизации буквой f.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации b , которое называется глубиной кодирования звука

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 b . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 b = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Задачи для самостоятельной подготовки .

1. Рассчитайте объём монофонического аудиофайла длительностью 10 с при 16-битном кодировании и частоте дискретизации 44,1 к Гц. (861 Кбайт)

2. Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1)0,3 2) 4 3) 16 4) 132

3. Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 13 3) 15 4) 22

4. Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 12 3) 13 4) 15

1. Общие сведения

Сложность: базовая.

Примерное время решения (для тех, кто будет выполнять часть 2): 2 минуты

Тема: Создание и обработка графической и мультимедийной информации

Подтема: Цифровая звукозапись

Что проверяется: Умение оценивать количественные характеристики процесса записи звука.

Краткие теоретические сведения: Поскольку данный тип задания является новым в КИМ ЕГЭ, приведем (пока без обоснования, обоснование ниже) математическую модель процесса звукозаписи:

N = k * F * L * T (1)

  • N – размер файла (в битах) , содержащего запись звука;
  • k - количество каналов записи (например, 1 – моно, 2 – стерео, 4 – квадро и т.д.);
  • F – частота дискретизации (в герцах), т.е. количество значений амплитуды звука фиксируемых за одну секунду;
  • L – разрешение, т.е. число бит, используемых для хранения каждого измеренного значения;
  • T – продолжительность звукового фрагмента (в секундах).

Как может выглядеть задание? Например, так: Заданы значения всех требуемых параметров процесса звукозаписи, кроме одного. Требуется оценить значение оставшегося параметра, например, размер файла или продолжительность звукового фрагмента.


Пример условия:

Варианты ответов:

1) 0,2 Мбайт

2. Пример задания

2.1. Условие задачи.

Задача 2012-А8-1.

Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 0,2 Мбайт 2) 2 Мбайт 3) 3 Мбайт 4) 4 Мбайт

2.2. Решение.

Приводим исходные данные к размерности биты-секунды-герцы и проводим расчеты по формуле (1):

Дано:

k = 1, т.к. одноканальная (моно) звукозапись;

F = 16 кГц = 16 000 Гц;

T = 1 мин = 60 с.

Найти N

Подставляем значение известных параметров в формулу (1)

N = 1 *16000 *24*60 =(16 *1000) * (8*3) * (4*15)=

= 2 4 *(2 3 *125) *(2 3 *3)*) *(2 2 * 15) = 2 12 *5625 (бит)=

= 2 12 *5625 бит = (2 12 *5625)/2 3 байт = 2 9 *5625 байт =

= (2 9 *5625)/ 2 20 Мбайт = 5625/2 11 Мбайт = 5625/2048 Мбайт.

Число 5625/2048 находится между числами 2 и 3. При этом оно ближе к 3, чем к 2, т.к. 3 * 2048 – 5625 < 1000; 5625 - 2 * 2048 > 1000.

Правильный вариант ответа: №3 (3 Мбайт)

Замечание. Другая идея решения приведена в п.3.3

3. Советы учителям и ученикам

3.1 Какие знания/умения/навыки нужны ученику, чтобы решить эту задачу

1) Не следует «зазубривать» формулу (1). Ученик, представляющий суть процесса цифровой звукозаписи, должен быть способен самостоятельно её сформулировать.

2) Необходимо умение записывать значения параметров в требуемой размерности, а также элементарные арифметические навыки, в т.ч. оперирование со степенями двойки.

А. Сильные ученики .

1. Скорее всего, они и так решат эту задачу.

2. Можно дать задание ученикам проверить формулу (1) на практике, записывая в файл звук с микрофона. При этом следует учесть, что она справедлива только в том случае, если записываемая информация не подвергается сжатию (формат WAV (PCM) без сжатия). Если используются аудиоформаты со сжатием (WMA, MP3), то объем получившегося файла будет по понятным причинам существенно меньше расчетного. Для экспериментов с цифровой звукозаписью можно использовать свободно распространяемый аудиоредактор Audacity (http://audacity.sourceforge.net/).

3. Целесообразно подчеркнуть концептуальную общность растрового представления звука и изображения, являющихся разновидностями одного и того же процесса приближенного представления непрерывного сигнала последовательность коротких дискретных сигналов, т.е. оцифровывания на основе дискретизации. В случае растрового изображения производится двумерная дискретизизация яркости в пространстве, в случае звука – одномерная дискретизация по времени. И в том, и в другом случае повышение частоты дискретизации (количества пикселей или звуковых отсчетов) и/или увеличение количества битов для представления одного отсчета (разрядность цвета или звука) ведет к повышению качества оцифровки, при одновременном росте размера файла с цифровым представлением. Отсюда – необходимость сжатия данных.

4. Желательно упомянуть об альтернативных способах оцифровки звука – запись «партий» инструментов в MIDI-формате. Здесь уместно провести аналогию с растровым и векторным представлением изображений.

Б. Не столь сильные ученики .

1. Необходимо обеспечить усвоение соотношения (1). Рекомендуется дать задания типа «Как изменится объем файла, если время записи звучания увеличить/уменьшить в p раз? »,

«Во сколько раз можно увеличить/уменьшить продолжительность записи, если максимальный размер файла увеличить/уменьшить в p раз? », «Как изменится объем файла, если количество бит для записи одного значения увеличить/уменьшить в p раз?» и т.д.

2. Необходимо убедиться, что учащиеся свободно оперируют размерностями, знают, что в Мбайте 2 23 бит и т.д.

3. Необходимо убедиться, что учащиеся достаточно арифметически грамотны, свободно владеют устным счетом со степенями двойки (умножение, деление, выделение сомножителей, представляющих собой 2 n).

4. Придумывайте свои подходы и пробуйте их.

3.3. Полезный прием.

В подобных задачах часто возникают степени двойки. Перемножать и делить степени проще, чем произвольные числа: умножение и деление степеней сводится к сложению и вычитанию показателей.

Заметим, что числа 1000 и 1024 отличаются менее, чем на 3%, числа 60 и 64 отличаются менее, чем на 7%. Поэтому можно поступить так. Провести вычисления, заменив 1000 на 1024 = 2 10 и 60 на 64 = 2 6 , используя преимущества операций со степенями. Ближайший к полученному числу ответ и будет искомым. Можно после этого перепроверить себя, проведя точные вычисления. Но можно учесть, что общая погрешность вычислений при нашем приближении не превышает 10%. Действительно, 60*1000 = 60000; 64*1024=65536;

60000 > 0.9 * 65536 = 58982.4

Таким образом, правильный результат умножений по формуле (1) немного больше, чем 90% от полученного приближенного результата. Если учет погрешности не меняет результата – можно не сомневаться в ответе.

Пример. (ege.yandex.ru, вариант 1).

Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 12 минут, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 30 Мбайт 2) 60 Мбайт 3) 75 Мбайт 4) 90 Мбайт

Решение. Размер записи в битах равен

2*16*1000*32*12*60

С учетом замены 1000 на 1024=2 10 и 60 на 64=2 6 получим:

2 1 *2 4 *2 10 *2 5 *3*2 2 *2 6 =3*2 28

Как известно, 1 Мбайт = 2 20 байт = 2 23 бит. Поэтому 3*2 28 бит = 3*32 = 96 Мбайт. Уменьшив это число на 10%, получим 86.4 Мбайт. В обоих случаях ближайшей величиной является 90 Мбайт.

Правильный ответ: 4

1. Прочитайте условие задачи. Выразите неизвестный параметр через известные. Особое внимание обратите, на размерность известных параметров. Она должна быть – биты-секунды-герцы (напомним, что 1 Гц = с -1). При необходимости, приведите значения параметров к нужной размерности, так же как это делается в задачах по физике.

2. Проводите вычисления, стараясь выделять степени двойки.

3. Обратите внимание, что в условии требуется выбрать наиболее подходящий ответ, поэтому высокая точность вычислений до знаков после запятой не требуется. Как только стало ясно, какой из вариантов ответов наиболее близок к вычисляемому значению, вычисления следует прекратить. Если расхождение со всеми вариантами ответов очень велико (в разы или на порядок), то вычисления надо перепроверить.

4. Задачи для самостоятельного решения

4.1. Клоны задачи 2012-А8-1.

Ниже приведены еще четыре варианта задачи 2012-А8-1.

А) Производится одноканальная (моно) звукозапись с частотой дискретизации 32 кГц и 24-битным разрешением. Запись длится 15 секунд, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

Б) Производится двухканальная (стерео) звукозапись с частотой дискретизации 32 кГц и 24-битным разрешением. Запись длится 30 секунд, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 1,5 Мбайт 2) 3 Мбайт 3) 6 Мбайт 4) 12 Мбайт

В) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 2 минуты, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

Г) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 4 минуты, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 2 Мбайт 2) 4 Мбайт 3) 8 Мбайт 4) 16 Мбайт

Правильные ответы:

А:1; Б:3; В:3; Г:4.

4.2. Задача 2012-А8-2(обратная к предыдущей).

A) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Результаты записываются в файл, размер которого не может превышать 8 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

Б) Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Результаты записываются в файл, размер которого не может превышать 8 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

В) Производится одноканальная (моно) звукозапись с частотой дискретизации 48 кГц и 8-битным разрешением. Результаты записываются в файл, размер которого не может превышать 2,5 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

Г) Производится одноканальная (моно) звукозапись с частотой дискретизации 48 кГц и 16-битным разрешением. Результаты записываются в файл, размер которого не может превышать 5 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

Правильные ответы:

А:3; Б: 4 ; В: 1; Г:1 .

5.Дополнение. Некоторые сведения о цифровой звукозаписи.

Распространение звука в воздухе можно рассматривать как распространение колебаний давления. Микрофон преобразует колебания давления в колебания электрического тока. Это аналоговый непрерывный сигнал. Звуковая плата обеспечивает дискретизацию входного сигнала от микрофона. Это делается следующим образом – непрерывный сигнал заменяется последовательностью измеренных с определенной точностью значений.

График аналогового сигнала:

Дискретное представление этого же сигнала (41 измеренное значение):

Дискретное представление этого же сигнала (161 измеренное значение, более высокая частота дискретизации):

Видно, что чем выше частота дискретизации, тем выше качество приближенного (дискретного) сигнала. Кроме частоты дискретизации, на качество оцифрованного сигнала влияет количество двоичных разрядов, отводимых для записи каждого значения сигнала. Чем больше бит отводится под каждое значение, тем более точно можно оцифровать сигнал.

Пример 2-х битного представления этого же сигнала (двумя разрядами можно пронумеровать только 4 возможных уровня величины сигнала):

Теперь можно выписать зависимость для размера файла с оцифрованным звуком

размер_файла = (количество_значений,_фиксируемых_за_1_секунду)*

*(количество_двоичных_разрядов_для_записи_одного_значения)*

*(число_секунд_записи).

Учитывая возможность одновременной записи звука с нескольких микрофонов (стерео-, квадро- запись и т.д.), что делается для усиления реалистичности при воспроизведении, получаем формулу (1).

При воспроизведении звука цифровые значения преобразуются в аналоговые. Электрические колебания, передаваемые на динамики, преобразуются ими снова в колебания давления воздуха.


Знание составляется из мелких
крупинок ежедневного опыта.
Д.И. Писарев

Цели: Применение теоретических знаний на практике.
Задачи урока:
Научить принципу двоичного кодирования при оцифровке звука;
Познакомить с понятием временной дискретизации звука;
Установить зависимость между качеством кодирования звука, глубиной кодирования и частотой дискретизации;
Научить оценивать информационный объем аудиофайла;
Записывать звук с помощью компьютера, сохранять его в звуковых файлах в формате WAV, воспроизводить.

Ход урока:

I. Организационный момент 1. Звучит музыка
2. Слова учителя:

Тема нашего урока «Двоичное кодирование звуковой информации». Сегодня мы познакомимся с понятием временной дискретизации звука, установим эксперементальным путем зависимость между качеством кодирования звука, глубиной кодирования и частотой дискретизации, научимся оценивать объем аудифайлов, записывать звук с помощью компьютера, сохранять его в звуковых файлах в формате WAV и воспроизводить.

II. Актуализация знаний учащихся. Вопросы: (ответы записывать в бланк №1)

1. Перечислите виды существования информации? (числовая, текстовая, графическая, звуковая).
2. Какое ключевое слово можно подобрать к видеоряду? (кодирование информации).
3. Что называют глубиной звука? (глубина звука или глубина кодирования - количество бит информации на кодировку звука).
4. Какие уровни громкости может иметь звук? (звук может иметь различные уровни громкости.

5. Что называется частотой дискретизации? (Частота дискретизации - количество измерений уровня входного сигнала в единицу времени (за 1 секунду).
6. По какой формуле вычисляется размер цифрового моноаудиофайла?
(А=Д*Т*I).
Д- частота дискретизации;
Т- время звучания или записи звука;
I- разрядность регистра.
7. По какой формуле вычисляется размер цифрового стереоаудиофайла?
А=2*Д*Т*I

III. Решение задач. Задача №1 (Семакин. №88 стр. 157, задачник №1). Бланк №1.

Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44.1 кГц и расширении 16 бит.


IV. Изучение нового материала.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.
С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи и, в результате, появляется возможность управления компьютером при помощи голоса.
Из курса физики вам известно, что звук представляет собой механическую волну с непрерывно меняющейся амплитудой и частотой (рис. 1). Чем выше амплитуда, тем громче звук, чем меньше частота, тем ниже тон. Компьютер -устройство цифровое, поэтому непрерывный звуковой сигнал должен быть преобразован в последовательность электрических импульсов (нулей и единиц). Для этого плоскость, на которой графически представлена звуковая волна, разбивается на горизонтальные и вертикальные линии (рис. 2 и рис. 3). Горизонтальные линии -это уровни громкости, а вертикальные - количество измерений за 1 секунду(одно измерение в секунду - это один герц), или частота дискретизации (Гц). Такой способ позволяет заменить непрерывную зависимость на дискретную последовательность уровней громкости, каждой из которых присваивается значение в двоичном коде (рис. 4).

рис.1 рис.2 рис.3 рис.4
Количество уровней громкости зависит от глубины звука - количества байтов, используемыз для кодирования одного уровня. Обычно 8 кГц и уровень квантования (код длиной 8 бит).
, где N- количество уровней громкости, а I - глубина звука (биты)

Пример: Бланк №3
Решение:
1)кодирование с частотой 5 Гц - это значит, что происходит измерений высоты звука в 1 сек. Глубина 4 бита - означает, что используются 16 уровней громкости.
«округлять» значения высоты звука будем до ближайшего нижнего уровня. (Результат кодирования: 1000 1000 1001 О11О 0111)

2) Для расчета информационного объема закодированного звука (А) используется простая формула: А = D * i * Т, где: D - частота дискретизации (Гц); i - глубина звука (бит); Т - время звучания (сек).
Получаем: А = 5 Гц * 4 бита * 1 сек = 20 бит.

V. Обучающая самостоятельная работа. Бланк №5


VI. Исследовательское задание. Бланк №6

Группы №1-5. Установить зависимость между качеством двоичного кодирования звука и информационным объемом аудиофайла для звуковой информации различного содержания (монологическая речь, диалогическая речь, стихотворение, песня); зависимость между информационным объемом файла и режимом записи (моно, стерео).


Ход исследовательской работы:

1) Заполнить бланк №2.
2) Записать результаты в таблицу, полученные в ходе эксперимента.
3) Сделать вывод.

VII. Подведение итогов работы в группах
VIII. Мини проект Музыкальные и звуковые возможности.
Обозначения: Программа: "В лесу родилась елочка"
SCRN 7
LINE (20,0)-(300,180),2,BF
FOR I=l TO 2000
X=280*RND+20 Y=180*RND
C=16*RND
PSET(X,Y),C
NEXT I
SLEEP 1
LINE (150,140)-(170,160),6,BF
PSET(110,140)
LINE-(210,140), 10
LINE-(160,110),10
LINE- (110,140),10
PAINT (160,120), 10,10
LOCATE 24,10
PRINT «В лесу родилась елочка»
PLAY «ms+80 02 18 caajafcc»
PSET (120,110)
LINE-(200,110),10
LINE-(160,85),10
LINE-(120,110),10
PAINT (160,90),10,10
LOCATE 24,10
PRINT "В лесу она росла",
PLAY "caab->dc4"
PSET (130,85)
LINE-(190,85),10
LINE-(160,65),10
LINE-(130,85), 10
PAINT (160,70),10,10
LOCATE 24,10
PRINT «ЗИМОЙ И ЛЕТОМ СТРОЙНАЯ»
PLAY "c PSET (140,65)
LINE-(180,65), 10
LINE -(160,50), 10
LINE - PAINT (160,60), 10,10
LOCATE 24,10
PRINT "ЗЕЛЕНАЯ БЫЛА"
PLAY "caajofu"
SLEEP
STOP
IX Итог урока

1). Контроль уровня усвоения программного материала
1. При частоте дискретизации 8 кГц качество дискретизированного звукового сигнала соответствует:

    а) качеству звучания аудио-CD;
    б) качеству радиотрансляции;
    в) среднему качеству.
2. В каком формате сохраняются звуковые файлы:
    a) DOC;
    б) WAV;
    в) BMP.
3. Качество кодирования непрерывного звукового сигнала зависит:
    а) от частоты дискретизации и глубины кодирования;
    б) от глубины цвета и разрешающей способности монитора;
    в) от международного стандарта кодирования.
4. Два звуковых файла записаны с одинаковой частотой дискретизации и глубиной кодирования. Информационный объем файла, записанного в стереорежиме, больше информационного объема файла, записанного в монорежиме:
    а) в 4 раза;
    б) объемы одинаковые;
    в) в 2 раза.
2). Оценка знаний и умений учащихся.
3). Слово учителя.

Безусловно, оценка качества звучания - во многом субъективна и зависит от нашего восприятия. Компьютер, так же как и человек, кодирует звуковую информацию с целью хранения и последующего воспроизведения. Подумайте, а в чем разница между звуковой информацией, хранимой в памяти ПК и в памяти человека? (Ответ: у человека процесс кодирования звука тесно связан с эмоциями).
Таким образом, компьютер хранит звук, а человек музыку!!! Музыка -единственный язык, на котором душа говорит с душою (Бертольд Авербах). Она может поднять в небеса, пробудить чувства, сковать разум и вселить страх. Для каждого человека музыка своя. Какие эмоции или ассоциации вызывает у вас «Лунная соната»?... Теплый взгляд любящего человека, нежное касание материнской руки, а теперь возможно, что эти чарующие звуки будут напоминать вам и об уроке информатики. Все это, согласитесь, недоступно цифровому двоичному коду.

Х. Домашнее задание Задачи № 89,91,92 стр 157.

Загрузка...
Top