Метод частотной модуляции радиотехнического сигнала. Основные характеристики сигналов Радиотехнический сигнал и их классификация

Прежде чем приступить к изучению каких-либо новых явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большим признакам. Для рассмотрения и анализа сигналов выделим их основные классы. Это необходимо по двум причинам. Во-первых, проверка принадлежности сигнала к конкретному классу - процедура анализа. Во-вторых, для представления и анализа сигналов разных классов зачастую приходится использовать разные средства и подходы. Основные понятия, термины и определения в области радиотехнических сигналов устанавливает национальный (ранее, государственный) стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы чрезвычайно разнообразны. Часть краткой классификации сигналов по ряду признаков приведена на рис. 1. Более подробно сведения о ряде понятий изложены далее. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы обычно описывается одной (одномерный сигнал; n = 1), двумя

(двумерный сигнал; n = 2) или более (многомерный сигнал n > 2) независимыми переменными. Одномерные сигналы являются функциями только времени, а многомерные, кроме того, отражают положение в n-мерном пространстве .

Рис.1. Классификация радиотехнических сигналов

Будем для определенности и упрощения в основном рассматривать одномерные сигналы, зависящие от времени, однако материал учебного пособия допускает обобщение и на многомерный случай, когда сигнал представляется в виде конечной или бесконечной совокупности точек, например в пространстве, положение которых зависит от времени. В телевизионных системах сигнал черно-белого изображения можно рассматривать как функцию f(x, у, f) двух пространственных координат и времени, представляющую интенсивность излучения в точке (х, у) в момент времени t на катоде. При передаче цветного телевизионного сигнала имеем три функции f(x, у, t), g(x, у, t), h(x, у, t), определенные на трехмерном множестве (можно рассматривать эти три функции также как компоненты трехмерного векторного поля). Кроме того, различные виды телевизионных сигналов могут возникать при передаче телевизионного изображения совместно со звуком.

Многомерный сигнал - упорядоченная совокупность одномерных сигналов. Многомерный сигнал создает, например, система напряжений на зажимах многополюсника (рис. 2). Многомерные сигналы описывают сложными функциями, и их обработка чаще возможна в цифровой форме. Поэтому многомерные модели сигналов особенно полезны в случаях, когда функционирование сложных систем анализируется с помощью компьютеров. Итак, многомерные, или векторные, сигналы состоят из множества одномерных сигналов

где n - целое число, размерность сигнала.

Р
ис. 2. Система напряжений многополюсника

По особенностям структуры временного представления (рис. 3) все радиотехнические сигналы делятся на аналоговые (analog), дискретные (discrete-time; от лат. discretus - разделенный, прерывистый) и цифровые (digital).

Если физический процесс, порождающий одномерный сигнал, можно представить непрерывной функцией времени u(t) (рис. 3, а), то такой сигнал называют аналоговым (непрерывным), или, более обобщенно, континуальным (continuos - многоступенчатым), если последний имеет скачки, разрывы по оси амплитуд. Заметим, что традиционно термин «аналоговый» используют для описания сигналов, которые непрерывны во времени. Непрерывный сигнал можно трактовать как действительное или комплексное колебание во времени u(t), являющейся функцией непрерывной действительной временной переменной. Понятие «аналоговый» сигнал связано с тем, что его любое мгновенное значение аналогично закону изменения соответствующей физической величины во времени. Примером аналогового сигнала является некоторое напряжение, которое подано на вход осциллографа, в результате чего на экране возникает непрерывная кривая как функция времени. Поскольку современная обработка непрерывных сигналов с использованием резисторов, конденсаторов, операционных усилителей и т. п. имеет мало общего с аналоговыми компьютерами, термин «аналоговый» сегодня представляется не совсем неудачным. Более корректным было бы называть непрерывной обработкой сигналов то, что сегодня обычно называют аналоговой обработкой сигналов.

В радиоэлектронике и технике связи широко применяются импульсные системы, устройства и цепи, действие которых основано на использовании дискретных сигналов. Например, электрический сигнал, отражающий речь, является непрерывным как по уровню, так и по времени, а датчик температуры, выдающий ее значения через каждые 10 мин, служит источником сигналов, непрерывных по значению, но дискретных по времени.

Дискретный сигнал получают из аналогового путем специального преобразования. Процесс преобразования аналогового сигнала в последовательность отсчетов называется дискретизацией (sampling), а результат такого преобразования - дискретным сигналом или дискретным рядом (discrete series).

Простейшая математическая модель дискретного сигнала
- последовательность точек на временной оси, взятых, как правило, через равные промежутки времени
, называемые периодом дискретизации (или интервалом, шагом дискретизации;sample time), и в каждой из которых заданы значения соответствующего непрерывного сигнала (рис. 3, б). Величина, обратная периоду дискретизации, называется частотой дискретизации (sampling frequency):
(другое обозначение
). Соответствующая ей угловая (круговая) частота определяется следующим образом:
.

Дискретные сигналы могут быть созданы непосредственно источником информации (в частности, дискретные отсчеты сигналов датчиков в системах управления). Простейшим примером дискретных сигналов могут служить сведения о температуре, передаваемые в программах новостей радио и телевидения, в паузах же между таким передачами сведений о погоде обычно нет. Не следует думать, что дискретные сообщения обязательно преобразуют в дискретные сигналы, а непрерывные сообщения - в непрерывные сигналы. Чаще всего именно непрерывные сигналы используют для передачи дискретных сообщений (в качестве их переносчиков, т. е. несущей). Дискретные же сигналы можно использовать для передачи непрерывных сообщений.

Очевидно, что в общем случае представление непрерывного сигнала набором дискретных отсчетов приводит к определенной потере полезной информации, так как мы ничего не знаем о поведении сигнала в промежутках между отсчетами. Однако, существует класс аналоговых сигналов, для которых такой потери информации практически не происходит, и поэтому они могут быть с высокой степенью точности восстановлены по значениям своих дискретных отсчетов.

Разновидностью дискретных сигналов является цифровой сигнал (digital signal), В процессе преобразования дискретных отсчетов сигнала в цифровую форму (обычно в двоичные числа) производится его квантование по уровню (quantization) напряжения . При этом значения уровней сигнала можно пронумеровать двоичными числами с конечным, требуемым числом разрядов. Сигнал, дискретный во времени и квантованный по уровню, называют цифровым сигналом. Кстати, сигналы, квантованные по уровню, но непрерывные во времени, на практике встречаются редко. В цифровом сигнале дискретные значения сигнала
вначале квантуют по уровню (рис. 3, в) и затем квантованные отсчеты дискретного сигнала заменяют числами
чаще всего реализованными в двоичном коде, который представляют высоким (единица) и низким (нуль) уровнями потенциалов напряжения - короткими импульсами длительностью(рис. 3, г). Такой код называют униполярным. Поскольку отсчеты могут принимать конечное множество значений уровней напряжения (см. например второй отсчет на рис. 3, г, который в цифровом виде практически равновероятно может быть записан как числом 5 - 0101, так и числом 4 - 0100), то при представлении сигнала неизбежно происходит его округление. Возникающие при этом ошибки округления называются ошибками (или шумами) квантования (quantization error, quantization noise).

Последовательность чисел, представляющая сигнал при цифровой обработке, является дискретным рядом (discrete series). Числа, составляющие последовательность, являются значениями сигнала в отдельные (дискретные) моменты времени и называются цифровыми отсчетами сигнала (samples). Далее квантованное значение сигнала представляется в виде набора импульсов, характеризующих нули («0») и единицы («1») при представлении этого значения в двоичной системе счисления (рис. 3, г). Набор импульсов используют для амплитудной модуляции несущего колебания и получения кодово-импульсного радиосигнала.

В результате цифровой обработки не получается ничего «физического», только цифры. А цифры - это абстракция, способ описания информации, содержащейся в сообщении. Следовательно, нам необходимо иметь что-то физическое, что будет представлять цифры или «являться носителем» цифр. Итак, сущность цифровой обработки состоит в том, что физический сигнал (напряжение, ток и т. д.) преобразуется в последовательность чисел, которая затем подвергается математическим преобразованиям в вычислительном устройстве.

Трансформированный цифровой сигнал (последовательность чисел) при необходимости может быть преобразован обратно, в напряжение или ток.

Цифровая обработка сигналов предоставляет широкие возможности по передаче, приему и преобразованию информации, в том числе и те, которые не могут быть реализованы с помощью аналоговой техники. На практике при анализе и обработке сигналов чаще всего цифровые сигналы заменяют дискретными, а их отличие от цифровых интерпретируют как шум квантования. В связи с этим эффекты, связанные с квантованием по уровню и оцифровкой сигналов, в большинстве случаев не будут приниматься во внимание. Можно сказать, что и в дискретных и цифровых цепях (в частности, в цифровых фильтрах) обрабатывают дискретные сигналы, только внутри структуры цифровых цепей эти сигналы представлены числами.

Вычислительные устройства, предназначенные для обработки сигналов, могут оперировать с цифровыми сигналами. Существуют также устройства, построенные в основном на базе аналоговой схемотехники, которые работают с дискретными сигналами, представленными в виде импульсов различной амплитуды, длительности или частоты повторения.

Одним из основных признаков, по которым различаются сигналы, является предсказуемость сигнала (его значений) во времени.

Р
ис. 3. Радиотехнические сигналы:

а - аналоговый; б - дискретный; в - квантованный; г - цифровой

По математическому представлению (по степени наличия априорной, от лат. a priori - из предшествующего, т. е. доопытной информации) все радиотехнические сигналы принято делить на две основные группы: детерминированные (регулярные; determined) и случайные (casual) сигналы (рис. 4).

Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны, т. е. предсказуемы с вероятностью, равной единице. Детерминированные сигналы описываются заранее заданными функциями времени. Кстати, мгновенное значение сигнала - это мера того, на какое значение и в каком направлении переменная отклоняется от нуля; таким образом, мгновенные значения сигнала могут быть как положительными, так и отрицательными (рис. 4, а). Простейшими примерами детерминированного сигнала являются гармоническое колебание с известной начальной фазой, высокочастотные колебания, модулированные по известному закону, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известны .

Если бы передаваемое по каналам связи сообщение было детерминированным, т. е. заранее известным с полной достоверностью, то его передача была бы бессмысленной. Такое детерминированное сообщение по сути дела не содержит никакой новой информации. Поэтому сообщения следует рассматривать как случайные события (или случайные функции, случайные величины). Иначе говоря, должно существовать некоторое множество вариантов сообщения (например, множество различных значений давления, выдаваемых датчиком), из которых реализуют с определенной вероятностью одно. В связи с этим и сигнал является случайной функцией. Детерминированный сигнал не может быть носителем информации. Его можно использовать лишь для испытаний радиотехнической системы передачи информации или тестирования отдельных ее устройств. Случайный характер сообщений, а также помех обусловил важнейшее значение теории вероятностей в построении теории передачи информации.

Рис. 4. Сигналы:

а - детерминированный; б - случайный

Детерминированные сигналы разделяют на периодические и непериодические (импульсные). Сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую он предназначен, называют импульсным сигналом.

Случайными называют сигналы, мгновенные значения которых в любой момент времени не известны и не могут быть предсказаны с вероятностью, равной единице. Фактически для случайных сигналов можно знать только вероятность того, что он примет какое-либо значение.

Может показаться, что понятие «случайный сигнал» не совсем корректно.

Но это не так. Например, напряжение на выходе приемника тепловизора, направленного на источник ИК-излучения, представляет хаотические колебания, несущие разнообразную информацию об анализируемом объекте. Строго говоря, все сигналы, встречающиеся на практике, являются случайными и большинство из них представляют хаотические функции времени (рис. 4, б). Как ни парадоксально на первый взгляд, но сигналом, несущим полезную информацию, может быть только случайный сигнал. Информация в таком сигнале заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. Сигналы связи во времени меняют мгновенные значения, причем эти изменения могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Таким образом, сигналы связи являются в некотором роде случайными процессами, поэтому и их описание осуществляется посредством методов, аналогичных методам описания случайных процессов.

В процессе передачи полезной информации радиотехнические сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражают в их названии: сигналы модулированные, демодулированные (детектированные), кодированные (декодированные), усиленные, задержанные, дискретизированные, квантованные и др.

По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

По принадлежности к тому или иному виду радиотехнических систем, и в частности систем передачи информации, различают «связные», телефонные, телеграфные, радиовещательные, телевизионные, радиолокационные, радионавигационные, измерительные, управляющие, служебные (в том числе пилот-сигналы) и другие сигналы.

Приведенная краткая классификация радиотехнических сигналов не полностью охватывает все их разнообразие.

Вопросы к государственному экзамену

по курсу «Цифровая обработка сигналов и сигнальные процессоры»

(Корнеев Д.А.)

Заочное обучение

Классификация сигналов, энергия и мощность сигналов. Ряды Фурье. Синусно-косинусная форма, вещественная форма, комплексная форма.

КЛАССИФИКАЦИЯ СИГНАЛОВ, ИСПОЛЬЗУЕМЫХ В РАДИОТЕХНИКЕ

С информационной точки зрения сигналы можно разделить на детерминированные и случайные.

Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью единица. Примерами детерминированных сигналов могут служить импульсы или пачки импульсов, форма, амплитуда и положение во времени которых известны, а также непрерывный сигнал с заданными амплитудными и фазовыми соотношениями внутри его спектра.

К случайным относят сигналы, мгновенные значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Такими сигналами являются, например,электрическое напряжение, соответствующее речи, музыке, последовательности знаков телеграфного кода при передаче неповторяющегося текста. К случайным сигналам относится также последовательность радиоимпульсов на входе радиолокационного приемника, когда амплитуды импульсов и фазы их высокочастотного заполнения флуктуируют из-за изменения условий распространения, положения цели и некоторых других причин. Можно привести большое число других примеров случайных сигналов. По существу, любой сигнал, несущий в себе информацию, должен рассматриваться как случайный.

Перечисленные выше детерминированные сигналы, «полностью известные», информации уже не содержат. В дальнейшем такие сигналы часто будут обозначаться термином колебание.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами - шумами. Уровень шумов является основным фактором, ограничивающим скорость передачи информации при заданном сигнале.

Аналоговый сигнал Дискретный сигнал

Квантованный сигнал Цифровой сигнал

Рис. 1.2. Сигналы произвольные по величине и по времени (а), произвольные по величине и дискретные по времени (б), квантованные по величине и непрерывные по времени (в), квантованные по величине и дискретные по времени (г)

Между тем сигналы от источника сообщений могут быть как непрерывные, так и дискретные (цифровые). В связи с этим применяемые в современной радиоэлектронике сигналы можно разделить на следующие классы:

произвольные по величине и непрерывные по времени (рис. 1.2, а);

произвольные по величине и дискретные по времени (рис. 1.2, б);

квантованные по величине и непрерывные по времени (рис. 1.2, в);

квантованные по величине и дискретные по времени (рис. 1.2, г).

Сигналы первого класса (рис. 1.2, а) иногда называют аналоговыми , так как их можно толковать как электрические модели физических величин, или непрерывными, так как они задаются по оси времени на несчетном множестве точек. Такие множества называются континуальными. При этом по оси ординат сигналы могут принимать любое значение в определенном интервале. Поскольку эти сигналы могут иметь разрывы, как на рис. 1.2, а, то, чтобы избежать некорректности при описании, лучше такие сигналы обозначать термином континуальный.

Итак, континуальный сигнал s(t) является функцией непрерывной переменной t, а дискретный сигнал s(х) - функцией дискретной переменной х, принимающей только фиксированные значения . Дискретные сигналы могут создаваться непосредственно источником информации (например, дискретными датчиками в системах управления или телеметрии) или образовываться в результате дискретизации континуальных сигналов.

На рис. 1.2, б представлен сигнал, заданный при дискретных значениях времени t (на счетном множестве точек); величина же сигнала в этих точках может принимать любое значение в определенном интервале по оси ординат (как и на рис. 1.2, а). Таким образом, термин дискретный характеризует не сам сигнал, а способ задания его на временнбй оси.

Сигнал на рис. 1.2, в задан на всей временнбй оси, однако его величина может принимать лишь дискретные значения. В подобных случаях говорят о сигнале, квантованном по уровню.

В дальнейшем термин дискретный будет применяться только по отношению к дискретизации по времени; дискретность же по уровню будет обозначаться термином квантование.

Квантование используют при представлении сигналов в цифровой форме с помощью цифрового кодирования, поскольку уровни можно пронумеровать числами с конечным числом разрядов. Поэтому дискретный по времени и квантованный по уровню сигнал (рис. 1.2, г) в дальнейшем будет называться цифровым.

Таким образом, можно различать континуальные (рис. 1.2, а), дискретные (рис. 1.2, б), квантованные (рис. 1.2, в) и цифровые (рис. 1.2, г) сигналы.

Каждому из этих классов сигналов можно поставить в соответствие аналоговую, дискретную или цифровую цепи. Связь между видом сигнала и видом цепи показана на функциональной схеме (рис. 1.3).



При обработке континуального сигнала с помощью аналоговой цепи не требуется дополнительных преобразований сигнала. При обработке же континуального сигнала с помощью дискретной цепи необходимы два преобразования: дискретизация сигнала по времени на входе дискретной цепи и обратное преобразование, т. е. восстановление континуальной структуры сигнала на выходе дискретной цепи.

Для произвольного сигнала s(t) = a(t)+jb(t) , где а(t) и b(t) - вещественные функции, мгновенная мощность сигнала (плотность распределения энергии) определяется выражением:

w(t) = s(t)s*(t) = a 2 (t)+b 2 (t) = |s(t)| 2 .

Энергия сигнала равна интегралу от мощности по всему интервалу существования сигнала. В пределе:

Е s = w(t)dt = |s(t)| 2 dt.

По существу, мгновенная мощность является плотностью мощности сигнала, так как измерения мощности возможны только через энергию, выделяемую на определенных интервалах ненулевой длины:

w(t) = (1/Dt) |s(t)| 2 dt.

Сигнал s(t) изучается, как правило, на определенном интервале Т (для периодических сигналов - в пределах одного периода Т), при этом средняя мощность сигнала:

W T (t) = (1/T) w(t) dt = (1/T) |s(t)| 2 dt.

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала производится по формуле:

W s = w(t) dt.

Идея о том, что любая периодическая функция может быть представлена в виде ряда гармонически связанных синусов и косинусов была предложена бароном Жан Батистом Жозефом Фурье (1768−1830).

Ряд Фурье функции f(x) представляется в виде

.
Основы цифровой обработки сигнала (ОЦОС).

Преподаватель: Кузнецов Вадим Вадимович

Https://github.com/ra3xdh/DSP-RPD

Https://github.com/ra3xdh/RTUiS-labs


  1. Вопрос. Радиотехнические сигналы. Классификация.
Сигналом называют процесс изменения во времени физического состояния какого-либо объекта, который служит для отображения, регистрации и передаче сообщений.

Сигналами могут быть напряжение, ток, напряженность поля. В большинстве случаев носителями радиотехнических сигналов являются электромагнитные колебания. Математической моделью сигнала обычно служит функциональная зависимость аргументом которой является время (зависимость напряжения в цепи от времени). Для детерминированных сигналов на основании математической модели можно узнать мгновенное значение сигнала в любой момент времени. Примером детерминированного сигнала является синусоидальное напряжение, f=50Гц w=314с^-1.

Импульсные сигналы существуют только в пределах конечного отрезка времени. Примеры импульсных сигналов: видеоимпульс (рис. 2а) и радиоимпульс (рис.2б).

Если физический процесс порождающий сигнал развивается во времени таким образом, что его можно измерять в любые моменты времени, то сигналы такого класса называют аналоговым. Аналоговый сигнал можно представить графиком его изменения во времени , то есть осциллограммой.

Дискретные сигналы описываются совокупностью отсчетов через равные промежутки времени. Пример дискретного сигнала показан на рисунке 3.

Цифровые сигналы являются особой разновидностью дискретных. Отсчетные значения представляются в виде чисел. Обычно используются двоичные числа с некоторой размерностью. Пример цифрового сигнала приведен в таблице 1.

Аналоговые сигналы.

Периодический сигнал S(t), период Т обладает следующим свойством: S(t)=S(t±nT) n=1,2,.. Пример периодического сигнала показан на рисунке 4.

Период сигнала связан с частотой f и круговой частотой w следующим соотношением: f=1/T=w/2π. Другие примеры периодических сигналов показаны на рисунке 5.


  1. Вопрос. Модулированный сигнал. Основы модуляции.
Для передачи низкочастотным сигналов, например звуковых, по радиоканалу применяются модулированные сигналы. Прямая передача низкочастотного сигнала по радиоканалу невозможна, так как длинна волны для низких частот слишком большая и аппаратура для передачи такой волны будет громоздкой.

В модулированном сигнале амплитуда, частота и фаза синусоидального ВЧ сигнала изменяется в такт с НЧ. НЧ сигнал накладывается на несущий.

1. Амплитудная модуляция (АМ).

S(t) - звуковой сигнал, - РЧ сигнал, несущая, М - коэффициент модуляции.

Пример модулированного сигнала показан на рисунке 6.

2. Частотная модуляция (ЧМ:FM). Амплитуда несущий остается неизменной, а в такт с модулируемым сигналом изменяется частота несущей.

Осциллограмма частотно-модулированного сигнала показана на рисунке 7.

3. Фазовая модуляция (ФМ:PM). . осциллограмма ФМ сигнала показана на рисунке 8.

Во время положительного полупериода фаза модулированные колебания опережают по фазе колебания несущей частоты, при этом период колебаний уменьшается, и частота увеличивается. Во время отрицательного периода модулирующего напряжения фаза модулированного колебания отстает по фазе от колебаний несущей частоты. Таким образом ФМ является одновременно и ЧМ. Для ЧМ справедливо обратное суждение: частотная модуляция является одновременно фазовой модуляцией. ФМ применяется в профессиональной радиосвязи.

Сигма и дельта функции.

Сигма функция задается следующим выражением:

Дельта функция – импульс бесконечно большой амплитуды и бесконечно малой длительности. (рис. 10).

Дельта-функция является производной от сигма-функции.

Если сигнал, задаваемый непрерывной функцией умножить на дельта-функции и проинтегрировать во времени , то результатом будет мгновенное значение сигнала в точке, где сосредоточен дельта-импульс.

Из фильтрующих свойств дельта-функции следует схема измерителя мгновенного значения сигнала.

Сигма и дельта функции применяются для анализа прохождения аналоговой и цифровых сигналов через линейные системы. Отклик системы, ели на нее подан дельта-импульс, называется импульсной характеристикой системы H(t).


  1. Вопрос. Мощности и энергии сигнала.
Мощность выделяющаяся на резисторе сопротивлением R, если к нему приложено напряжение u определяется как W=(u^2)/R.

Если к резистору приложено не постоянное напряжение, а переменный сигнал s(t), то мощность так же будет переменной (мгновенная мощность).

В теории сигналов обычно полагают, что R=1. w=s(t) ^2. Чтобы найти энергию сигнала необходимо проинтегрировать мощность по всему диапазону;

Для бесконечных во времени сигналов среднюю мощность можно определить следующим образом:

W=[Вт], E=[(В^2)*c]

Именно такая энергия выделяется на резисторе сопротивлением 1 ом, если к нему приложено напряжение s(t).

Если сигнал излучается на некотором интервале T, то рассматривается средняя мощность сигнала.

Спектральный анализ сигналов.


  1. Вопрос. Разложение аналогового сигнала в ряд Фурье.
Разложение в ряд Фурье заключается в представление периодического сигнала в виде суммы синусоидальных сигналов.

Пример представления пилообразного сигнала в виде суммы синусоидальных сигналов с различной амплитудой и фазой представлен на рис. 12.

Введем основную частоту периодического сигнала с периодом T: w_1=2pi/T. Периодический сигнал при разложении в ряд Фурье представляется в виде суммы синусоидальных сигналов или гармоник, с частотами кратными основной частоте: 2w_1, 3w_1... Амплитуды этих сигналов называются коэффициентами разложения. Ряд Фурье записывается в виде суммы гармоник:

Вещественная форма ряда Фурье:

Используя известную форму записи из курса электротехники в виде комплексного числа , ряд Фурье представляется в виде:

В данное выражение входят гармоники с отрицательными частотами. Отрицательная частота – это не физическое понятие, она связана со способом представления комплексных чисел. Так как сумма гармоник должна быть действительным числом, то каждой гармонике соответствует комплексно сопряженная гармоника с –ω. По абсолютному значению амплитуды гармоники с положительными и отрицательными частотами равны.


  1. Вопрос. Спектральные диаграммы.
Спектральные диаграммы – графики, изображающие коэффициенты ряда Фурье в вещественной форме.

Различают амплитудные и фазовые спектральные диаграммы. По горизонтальной оси откладывают частоты гармоник, по вертикали – амплитуды (фазы). Если изображен модуль ряда Фурье в комплексной форме, то по оси Х откладывают положительную и отрицательную круговую частоту ω.

Пример спектра аналогового периодического сигнала. (ШИМ)

Рассмотрим последовательность прямоугольных импульсов с периодом Т, длительностью τ и амплитудой А.

Скважность.

Осциллограмма такого сигнала оказана на рисунке 13.

Постоянная составляющая прямоугольного сигнала.

b n = 0.

Спектральная диаграмма для последовательности прямоугольных импульсов показана на рис. 14.

Из спектра диаграммы видно, что с увеличением скважности уменьшается длительность импульса. Последовательность прямоугольных импульсов имеет более богатый спектральный состав, в спектре присутствуют больше гармоник и больше амплитуд. Таким образом, сокращение длительности импульса приводит к расширению спектра. Сигналы с широким спектром могут создавать помехи.

Вычисление ряда Фурье производится с помощью математических пакетов.

Преобразование Фурье.

Применяется для расширения области допустимых сигналов.

Различают прямое и обратное преобразование.


  1. Вопрос. Прямое преобразование (переход от сигнала к спектру).
Разложение в ряд Фурье позволяет получить спектр только для периодических сигналов. Преобразование Фурье расширяет область применения спектрального анализа на непериодические сигналы.

Пусть s(t) – одиночный импульсный сигнал конечной длительности. Дополним его таким же, периодически следующим сигналом, с периодом Т. Получим последовательность импульсов (рис.15).

Чтобы перейти к преобразованию Фурье и найти спектр одиночного импульса необходимо найти предельный вид ряда Фурье в комплексной форме при

Расчет спектра:

Физический смыл спектральной плотности состоит в том, что она является коэффициентом пропорциональности между длинной малого интервала частот Δf в близи частоты f 0 и амплитуды гармонического сигнала с частотой f 0 . Сигнал s(t) как бы складывается из множества разных синусоидальных сигналов малой амплитуды. Спектр плотности показывает вклад в сигнал элементарных синусоидальных сигналов каждой частоты.

Спектр плотности вероятности является комплексным числом и отображается кривой на комплексной плоскости.

Действительное число – амплитудный спектр

Спектр мощности

Фазовый спектр

Свойства преобразования Фурье


  1. Линейность – спектр суммы нескольких сигналов умножить на постоянные коэффициенты равен сумме этих сигналов. Если амплитуда сигнала меняется в А раз, то его спектральная плотность тоже меняется в А раз.

  1. Свойство вещественной и мнимой частей спектра. Вещественная часть спектра, то есть амплитудный спектр – четный функция частоты. Амплитудный спектр симметричен относительно нулевой частоты. Мнимая часть спектра – нечетная функция частоты. Фазовый спектр антисимметричен относительно нулевой частоты.

  1. Смещение сигнала во времени. При смещении сигнала во времени амплитудный спектр не меняется, а фазовый спектр смещается по фазе.


Спектр произведения сигналов равен свертке спектров и наоборот.

Свойство применяется для отыскания сигнала на выходе , если известна АЧХ.

Линейная система и сигналы на ее входе и выходе показаны на рисунке 20.


  1. Спектр дельта функции.

В спектре дельта-импульса содержатся все частоты от 0 до .


  1. Спектр производной и интеграла.
Дифференциация сигналов приведет к расширению спектра, интегрирование – к сжатию (рис.21).


  1. Связь с рядами Фурье.
Комплексная амплитуда к-ой гармоники ряда Фурье связана со спектральной плотностью так:

Зная преобразование для одного периода периодического сигнала можно вычислить его разложение в ряд Фурье.

Пример вычисления спектра импульсного сигнала.

Вычислим спектр прямоугольного видео импульса с амплитудой и длительностью . Импульс расположен симметрично относительно начала отсчета (рис. 22).

Переходим от круговой частоты к частоте f.

Амплитудный спектр показан на (рис 23).

Фазовый спектр показан на (рис 24).

Спектр мощности показан на (рис 25).


  1. Вопрос. Обратное преобразование Фурье.
Служит для нахождения сигнала по спектру.

Условие существования спектральной плотности сигнала.

Спектральный анализ интегрируемых сигналов.

Сигнал можно сопоставить спектральную плотность если сигнал абсолютно интегрирован.

К абсолютно интегрированному сигналу не относятся гармонические колебания и постоянный ток.

Примеры абсолютно интегрируемых и неинтегрируемых сигналов на (рис. 16).

Спектры таких сигналов представляются через дельта-функции.

Спектр сигнала постоянного уровня А представляет собой дельта-импульс, расположенный на нулевой частоте ().

Физический смысл данного выражения – сигнал, постоянный по модулю и по времени имеет постоянную составляющую только на нулевой частоте.

Спектр синусоидального сигнала.

Любой периодический сигнал можно представить рядом Фурье в комплексной форме, то есть в виде суммы синусоидальных сигналов.

Спектры постоянного тока, синусоидального и периодического сигнала показаны на (рис. 17).

На анализаторе спектра спектр периодического сигнала будет наблюдаться в виде последовательности остроконечных импульсов. Амплитуды данных импульсов пропорциональны амплитудам гармоник. Типичный вид спектра представлен на (рис. 18).

Спектральный анализ можно применять и к случайным сигналам. Для них рассматривается спектр мощности . Для примера рассмотрим белый шум (рис. 1).

С информационной точки зрения сигналы можно разделить на детерминированные и случайные.

Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью единица. Примерами детерминированных сигналов могут служить импульсы или пачки импульсов, форма, амплитуда и положение во времени которых известны, а также непрерывный сигнал с заданными амплитудными и фазовыми соотношениями внутри его спектра.

К случайным относят сигналы, мгновенные значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Такими сигналами являются, например, электрическое напряжение, соответствующее речи, музыке, последовательности знаков телеграфного кода при передаче неповторяющегося текста. К случайным сигналам относится также последовательность радиоимпульсов на входе радиолокационного приемника, когда амплитуды импульсов и фазы их высокочастотного заполнения флуктуируют из-за изменения условий распространения, положения цели и некоторых других причин. Можно привести большое число других примеров случайных сигналов. По существу, любой сигнал, несущий в себе информацию, должен рассматриваться как случайный.

Перечисленные выше детерминированные сигналы, «полностью известные», информации уже не содержат. В дальнейшем такие сигналы часто будут обозначаться термином колебание.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами - шумами. Уровень шумов является основным фактором, ограничивающим скорость передачи информации при заданном сигнале.

Рис. 1.2. Сигналы произвольные по величине и по времени (а), произвольные по величине и дискретные по времени (б), квантованные по величине и непрерывные по времени (в), квантованные по величине и дискретные по времени (г)

Поэтому изучение случайных сигналов неотделимо от изучения шумов. Полезные случайные сигналы, а также помехи часто объединяют термином случайные колебания или случайные процессы.

Дальнейшее подразделение сигналов можно связать с их природой: можно говорить о сигнале как о физическом процессе или как о закодированных, например в двоичный код, числах.

В первом случае под сигналом понимают какую-либо изменяющуюся во времени электрическую величину (напряжение, ток, заряд и т. д.), определенным образом связанную с передаваемым сообщением.

Во втором случае то же сообщение содержится в последовательности двоично-кодированных чисел.

Сигналы, формируемые в радиопередающих устройствах и излучаемые в пространство, а также поступающие в приемное устройство, где они подвергаются усилению и некоторым преобразованиям, являются физическими процессами.

В предыдущем параграфе указывалось, что для передачи сообщений на расстояние используются модулированные колебания. В связи с этим сигналы в канале радиосвязи часто подразделяют на управляющие сигналы и на радиосигналы; под первыми понимают модулирующие, а под вторыми - модулированные колебания.

Обработка сигналов в виде физических процессов осуществляется с помощью аналоговых электронных цепей (усилителей, фильтров и т. д.).

Обработка сигналов, закодированных в цифру, осуществляется с помощью вычислительной техники.

Представленная на рис. 1.1 и описанная в § 1.2 структурная схема канала связи не содержит указаний о виде используемого для передачи сообщения сигнала и структуре отдельных устройств.

Между тем сигналы от источника сообщений, а также после детектора (рис. 1.1) могут быть как непрерывные, так и дискретные (цифровые). В связи с этим применяемые в современной радиоэлектронике сигналы можно разделить на следующие классы:

произвольные по величине и непрерывные по времени (рис. 1.2, а);

произвольные по величине и дискретные по времени (рис. 1.2, б);

квантованные по величине и непрерывные по времени (рис. 1.2, в);

квантованные по величине и дискретные по времени (рис. 1.2, г).

Сигналы первого класса (рис. 1.2, а) иногда называют аналоговыми, так как их можно толковать как электрические модели физических величин, или непрерывными, так как они задаются по оси времени на несчетном множестве точек. Таки? множества называются континуальными. При этом по оси ординат сигналы могут принимать любое значение в определенном интервале. Поскольку эти сигналы могут иметь разрывы, как на рис. 1.2, а, то, чтобы избежать некорректности при описании, лучше такие сигналы обозначать термином континуальный.

Итак, континуальный сигнал s(t) является функцией непрерывной переменной t, а дискретный сигнал s(х) - функцией дискретной переменной х, принимающей только фиксированные значения . Дискретные сигналы могут создаваться непосредственно источником информации (например, дискретными датчиками в системах управления или телеметрии) или образовываться в результате дискретизации континуальных сигналов.

На рис. 1.2, б представлен сигнал, заданный при дискретных значениях времени t (на счетном множестве точек); величина же сигнала в этих точках может принимать любое значение в определенном интервале по оси ординат (как и на рис. 1.2, а). Таким образом, термин дискретный характеризует не сам сигнал, а способ задания его на временнбй оси.

Сигнал на рис. 1.2, в задан на всей временнбй оси, однако его величина может принимать лишь дискретные значения. В подобных случаях говорят о сигнале, квантованном по уровню.

В дальнейшем термин дискретный будет применяться только по отношению к дискретизации по времени; дискретность же по уровню будет обозначаться термином квантование.

Квантование используют при представлении сигналов в цифровой форме с помощью цифрового кодирования, поскольку уровни можно пронумеровать числами с конечным числом разрядов. Поэтому дискретный по времени и квантованный по уровню сигнал (рис. 1.2, г) в дальнейшем будет называться цифровым.

Таким образом, можно различать континуальные (рис. 1.2, а), дискретные (рис. 1.2, б), квантованные (рис. 1.2, в) и цифровые (рис. 1.2, г) сигналы.

Каждому из этих классов сигналов можно поставить в соответствие аналоговую, дискретную или цифровую цепи. Связь между видом сигнала и видом цепи показана на функциональной схеме (рис. 1.3).

При обработке континуального сигнала с помощью аналоговой цепи не требуется дополнительных преобразований сигнала. При обработке же континуального сигнала с помощью дискретной цепи необходимы два преобразования: дискретизация сигнала по времени на входе дискретной цепи и обратное преобразование, т. е. восстановление континуальной структуры сигнала на выходе дискретной цепи.

Рис. 1.3. Виды сигнала и соответствующие им цепи

Наконец, при цифровой обработке континуального сигнала требуются еще два дополнительных преобразования: аналог-цифра, т. е. квантование и цифровое кодирование на входе цифровой цепи, и обратное преобразование цифра-аналог, т. е. декодирование на выходе цифровой цепи.

Процедура дискретизации сигнала и особенно преобразование аналог-цифра требуют очень высокого быстродействия соответствующих электронных устройств. Эти требования возрастают с повышением частоты континуального сигнала. Поэтому цифровая техника получила наибольшее распространение при обработке сигналов на относительно низких частотах (звуковых и видеочастотах). Однако достижения микроэлектроники способствуют быстрому повышению верхней границы обрабатываемых частот.


Общие сведения о радиотехнических сигналах

При передаче информации на расстояние с помощью радиотехнических систем используются различные виды радиотехнических (электрических) сигналов. Традиционно радиотехническими сигналами принято считать любые электрические сигналы, относящиеся к радиодиапазону. С математической точки зрения, всякий радиотехнический сигнал можно представить некоторой функцией времени u (t ), которая характеризует изменение его мгновенных значений напряжения (чаще всего), тока или мощности. По математическому представлению все многообразие радиотехнических сигналов принято делить на две основные группы: детерминированные (регулярные) и случайные сигналы.

Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны, т. е., предсказуемы с вероятностью, равной единице /1/. Примером детерминированного радиотехнического сигнала может служить гармоническое колебание. Следует отметить, что по сути дела детерминированный сигнал не несет в себе никакой информации и практически все его параметры можно передать по каналу радиосвязи одним или несколькими кодовыми значениями. Другими словами, детерминированные сигналы (сообщения) по существу не содержат в себе информации, и нет смысла их передавать.

Случайные сигналы – это сигналы, мгновенные значения которых в любые моменты времени не известны и не могут быть предсказаны с вероятностью, равной единице /1/. Практически все реальные случайные сигналы или большинство из них, представляют собой хаотические функции времени.

По особенностям структуры временного представления все радиотехнические сигналы делятся на непрерывные и дискретные. а по типу передаваемой информации: на аналоговые и цифровые. В радиотехнике широко применяются импульсные системы, действие которых основано на использовании дискретных сигналов. Одной из разновидностей дискретных сигналов является цифровой сигнал /1/. В нем дискретные значения сигнала заменяются числами, чаще всего реализованными в двоичном коде, который представляют высоким (единица ) и низким (нуль ) уровнями потенциалов напряжения.

Функции, описывающие сигналы, могут принимать как вещественные, так и комплексные значения. Поэтому в радиотехнике говорят о вещественных и комплексных сигналах. Применение той или иной формы описания сигналадело математического удобства.

Понятие спектра

Непосредственный анализ воздействия сигналов сложной формы на радиотехнические цепи весьма затруднителен и вообще не всегда возможен. Поэтому сложные сигналы имеет смысл представлять как сумму некоторых простых элементарных сигналов. Принцип суперпозиции обосновывает возможность такого представления, утверждая, что в линейных цепях воздействие суммарного сигнала равносильно сумме воздействий соответствующих сигналов по отдельности.

В качестве элементарных сигналов часто применяют гармоники. Такой выбор имеет ряд достоинств:

а) Разложение на гармоники реализуется достаточно легко путем использования преобразования Фурье.

б) При воздействии гармонического сигнала на любую линейную цепь его форма не изменяется (остается гармонической). Сохраняется также частота сигнала. Амплитуда и фаза, конечно, изменяются; их можно сравнительно просто рассчитывать, применяя метод комплексных амплитуд.

в) В технике широко используются резонансные системы, позволяющие экспериментально выделять одну гармонику из сложного сигнала.

Представление сигнала суммой гармоник, заданных частотой, амплитудой и фазой, называется разложением сигнала в спектр.

Гармоники, входящие в состав сигнала, задаются в тригонометрической или мнимопоказательной форме.



Загрузка...
Top