Схема подключения литиевых аккумуляторов для повер банка. Самодельный power bank с солнечной батареей

а. Смартфон – девайс, который стал для всех людей незаменимым устройством для общения. Их используют для выхода в интернет и часто на долгое время. Но у смарфтонов есть один недостаток – это время автономной работы. В лучшем случае аккумулятор будет работать без подзарядки в течение одного дня, а если активно им пользоваться, то несколько часов. В этой статье и прилагаемом видео показано, как изготовить мощный самодельный Powerbank, который может заряжать даже одновременно для смартфона или планшета или их сочетания.

Купить радионяню, о которой рассказано в начале ролика, и все комплектующие повербанка можно в этом китайском магазине . О том, как получать кэшбэк (возврат стоимости)в размере 7% от цены всех покупок есть на нашем сайте . Скачать схему, плату и другие файлы проекта .

Для того, чтобы улучшить параметры работы аккумуляторных батарей мобильного телефона, были заказаны портативные зарядные устройства, которые носят простонародное название повербанк. Но в единичном виде такое устройство даже наполовину не способно зарядить аккумулятор телефона. И даже три таких устройства не дают выход из ситуации. Покупка мощного пауэрбанка – довольно дорогое удовольствие. Нормальный powerbank, скажем, с емкостью 10000 миллиампер стоит 25-30 долларов. Учитывая это и долгое время ожидания посылки, проще сделать свой вариант.

Описание схемы повербанка

Схема powerbank состоит из трех основных частей. Это контроллер заряда литиевых аккумуляторов с функцией авто-отключения при полной зарядке; отсек батарей с параллельно соединенными литий-ионными аккумуляторами стандарта 18650; выключатель питания на 5-10 ампер от компьютерного блока питания; повышающий преобразователь, для того чтобы повышать напряжение с аккумулятора до желаемых значений в 5 вольт, которые нужны для зарядки телефона или планшета; юсб-разъем, к которому подключается заряжаемое устройство.

Кроме простоты и дешевизны, представленная схема высокие значения выходного тока, который может доходить до 4 ампер и зависит от номинала таких компонентов, как полевой транзистор, диод Шоттки на выходе и индуктивность. Китайские аналоги способны обеспечивать выходной ток не более 2,1 ампер. Этого достаточно для того, чтобы зарядить одновременно пару смартфонов, а наш пауэрбанк может справиться с 4-5 смартфонами.

Рассмотрим отдельные узлы конструкции. В качестве источника питания 5 параллельно соединенных аккумуляторов стандарта 18650 от ноутбука. Емкость каждого аккумулятора 2600 миллиампер в час. Использован корпус от адаптера или инвертора, но можно использовать другой подходящий корпус. В качестве контроллера для заряда будем использовать плату для заряда, купленную . Ток заряда порядка 1 ампера. Инвертор, который будет повышать напряжение от аккумулятора до нужных 5 вольт, можно взять также готовый. Он стоит очень дешево. Максимальный выходной ток до 2 ампер.

Сборка схемы

На первом этапе фиксируем аккумуляторы, скрепляем друг с другом с помощью клеевого пистолета. Далее нужно подключить к аккумуляторной батарее контроллер, чтобы проверить как происходит процесс заряда. Нужно также узнать время заряда батареи и понять работает ли авто-отключение при полной зарядке. На плате все детально подписано.

Заряжать можно от любого юсб порта. Индикатор должен показать, что идет зарядка. Через 5 часов загорелся второй индикатор, что означает, что процесс заряда завершен. Если используется металлический корпус, следует дополнительно изолировать батарейки с помощью широкого скотча.

Одним из основных узлов схемы является повышающий dc-dc конвертор, инвертор – преобразователь напряжения. Он предназначен для того, чтобы поднимать напряжение с аккумуляторов до 5 Вольт, нужные для заряда телефона. Напряжение одного аккумулятора составляет 3,7 вольт. Здесь они соединены параллельно, поэтому инвертор необходим.

Система построена на таймере 555 – полевой транзистор и стабилизация выходного напряжения, который задается с помощью стабилитрона vd2. Стабилитрон, возможно придется подобрать. Подойдет любой маломощный стабилитрон. Резисторы на 0,25 или даже 0,125 ватт. Дроссель L1 можно вынуть из компьютерного блока питания. Диаметр провода не менее 0,8, лучше всего сделать 1 миллиметр. Количество витков 10-15.

В цепи собран частотозадающий узел, который задает рабочую частоту таймера. Последний подключен в качестве генератора прямоугольных импульсов. С таким подбором компонентов рабочая частота таймера около 48-50 кГц. Затворный ограничительный резистор R3 для полевого транзистора 4,7 Ом. Сопротивление может быть от 1 до 10 Ом. Можно этот резистор заменить перемычкой. Полевой транзистор любой средней мощности с током 7 ампер. Подойдут полевики от материнских плат. Небольшой транзистор обратной проводимости vt1. Подойдет kt315 или другой маломощный транзистор обратной проводимости. Диод выпрямительный – желательно использовать диод Шоттки с минимальным падением напряжения на переходе. Две емкости стоят в качестве фильтра питания.

Данный инвертор импульсный, он обеспечивает высокий КПД, высокую стабилизацию выходного напряжения, не нагревается в ходе работы. Поэтому силовые компоненты устанавливать на теплоотвод не нужно. Если будут затруднения с диодами Шоттки, то можно использовать диоды, которые стоят в компьютерных блоках питания. Сдвоенные диоды to-220 встречаются в них.

На фото ниже инвертор в собранном состоянии.

Можно сделать печатную плату. В описании есть ссылка.

Тестирование инвертора на 5 вольт

Проверяем инвертор на работоспособность. Заряжается смартфон, как видно, идет процесс заряда. Выходное напряжение держится на уровне 5,3 вольта, что полностью соответствует нормативам. Инвертор при этом не нагревается.

Окончательная сборка в корпус

Из куска пластика нам нужно вырезать боковые стенки. На контроллере заряда два светодиодных индикатора, которые показывают процент заряда. Их нужно заменить более яркими и вывести на переднюю панель. В боковой стенке вырезаны два отверстия под микро юсби разъемы, то есть одновременно можно заряжать два устройства. Также есть отверстия для светодиодов. Отверстие для контроллера, то есть для зарядки встроенных акб. Будет сделано также небольшое отверстие под выключатель питания.

Все разъемы, светодиоды и выключатель фиксируются с помощью клеевого пистолета. Осталось все запаковать в корпус.

На выход устройства подключен USB-тестер. Видно, что на выходе твердо держится напряжение 5 вольт. Подключим мобильные телефоны и попробуем зарядить их с самодельного Power банка. Будут заряжаться сразу два смартфона. Ток заряда скачет до 1,2 Ампера, напряжение тоже в норме. Идет успешно процесс заряда. Инвертор работает безотказно. Получилось компактно и, главное, стабильно. Схема проста в сборке, использованы всем знакомые комплектующие.

Иногда, бывают такие ситуации, когда необходимо зарядить телефон или фотоаппарат, а розетки нет поблизости. В таком случае на помощь придёт устройство под названием "power bank”.

Такое устройство обычно состоит из пары - тройки небольших аккумуляторов, зарядного устройства для них и преобразователя напряжения для заряжаемого устройства, будь то фонарь, мобильный телефон или фотокамера.

Аккумуляторы я взял из старой батареи от ноутбука, типоразмер 18650, для их зарядки решил использовать китайскую микросхему TP4056, специально разработанную для зарядки Li-Ion аккумуляторов, а повышающий преобразователь, построенный на микросхеме CE8301, купил в виде готового модуля. Микросхемы и модули, заказывал на eBay.com.
TP4056 имеет ряд положительных особенностей, а именно:
1. Защита аккумуляторов от перезаряда и перегрева
2. Небольшое количество внешних элементов
3. Индикация режимов работы
4. Регулируемый ток заряда
5. Низкая стоимость
6. И т.д. и т.п.

Схема включения TP4056

Регулировка тока заряда осуществляется резистором Rprog. Я поставил 2,2 кОм, ток зарядки 500мА.

CE8301 имеет миллион подобных аналогов, особо зацикливаться на нём не стоит, скажу лишь, что работает он от 0,9В до 5В, при этом на выходе держит 5В 500мА(600мА максимум), чего вполне достаточно для зарядки большинства мобильных телефонов и фотокамер.

Схема включения CE8301

Фото преобразователей

Готовое устройство хотелось сделать достаточно функциональным, поэтому я решил использовать 2 преобразователя, если придётся заряжать сразу пару устройств, а для аккумуляторов решил взять аж 4 микросхемы TP4056, чтобы можно было использовать аккумуляторы с разной ёмкостью.
Для того чтобы микросхемы TP4056 не влияли друг на друга аккумуляторы соединил через диоды Шоттки, с падением 0,2 Вольта.

Итоговая схема получилась такой

Изготовил

Проверил

И смонтировал все компоненты


Чёрные капельки с надписью 103 это терморезисторы на 10кОм.

Плата получилась довольно компактной с учётом того, что из SMD компонентов были использованы только конденсаторы на 10мкФ и микросхемы TP4056. При пайке подкладывал под корпус микросхем кусочки малярного (бумажного) скотча, чтобы теплоотвод микросхем не замыкал дорожки.
Схема отлично работает, ничего не нагревается. Во время зарядки горит красный светодиод, когда напряжение на аккумуляторе достигает 4,2В, красный светодиод тухнет и загорается зелёный – зарядка прекращается. Если сработала тепловая защита, светодиоды не горят, а если к схеме не подключен аккумулятор, зелёный горит, а красный мигает. Зарядка банок одной ёмкости и с одинаковым остаточным напряжением происходит достаточно синхронно. В общем, я получил именно то, что хотел.

Всем мозгочинам , здравствуйте! Полагаю все вы относитесь к той части населения планеты, у которой в ходу смартфоны, и думаю, за последние пару лет вы несколько раз меняли их на более продвинутые. Во всех «устаревших» смартфонах есть литий-ионные аккумуляторы, использовать которые в новых моделях не представляется возможности, и таким образом у вас остаются хорошие, но бесполезные аккумуляторы… А так ли это?

Лично у меня накопилось три телефонных аккумулятора (и телефоны я менял отнюдь не из-за неисправности батарей), они не нагревались и не разбухли, и их можно использовать для запитывания каких-нибудь гаджетов. Емкость среднего аккумулятора после 2 лет использования составляет около 80% от изначальной, это как раз период в течение которого я обычно приобретаю новый мозгосмартфон . А если задуматься еще о усилиях по получению исходных материалов, производству самих аккумуляторов и расходов на транспортировку…

Учитывая все высказанное было бы настоящим позором позволить им медленно «умирать» или просто выбросить их. В этой мозгостатье и ролике я расскажу вам, как своими руками сделать самоделку , позволяющую «дать новую жизнь» аккумуляторов от старых телефонов, то есть сделать внешний аккумулятор для гаджетов, он же POWERBANK.

Шаг 1: Материалы

Ну что, начнем с того, что же нужно для создания своего собственного внешнего аккумулятора. Из материалов необходимы:

  • литий-ионный аккумулятор,
  • плата зарядки и защиты для литий-ионных аккумуляторов, рассчитанная на 5В, максимальный входящий ток 1А (чем меньше, тем более продолжительней будет «вторая жизнь» аккумулятора),
  • повышающий преобразователь постоянного тока с выходными значениями5В и макс. 600МА
    провода,
  • несколько штырьковых разъемов,
  • канцелярский зажим,
    кусочек акрила,
  • винты,
  • и выключатель.

Еще понадобятся:

  • пара плоскогубцев,
  • стриппер,
  • паяльник,
  • и клеевой пистолет,
  • а еще дрель и бормашинка.

Шаг 2: Как работают платы?

Для начала ознакомимся с платой зарядки и защиты для литий-ионных аккумуляторов. Три ее важных функций это зарядка, защита от превышения тока и защита от слишком малого напряжения.

Литий-ионные батареи заряжаются по определенной схеме - когда они почти полностью заряжены, снижается их потребление тока. Мозгоплата распознает это и как только напряжение батареи достигнет 4.2В, останавливает зарядку. На выходе платы есть схема защиты предотвращающая превышение тока и чрезмерное понижение напряжения. В современные телефонные аккумуляторы такая защита уже встроена, но в данной самоделке эта плата позволит использовать незащищенные аккумуляторы, которые можно найти в старых ноутбуках. Зарядный ток платы можно настраивать посредством резистора, и он должен быть в пределах 30-50% от номинальной емкости аккумулятора.

DC преобразователь конвертирует постоянное напряжение батареи в квадратную волну и пропускает ее через небольшую катушку. Вследствие индукционных процессов образуется более высокое напряжение, которое обратно конвертируется в постоянное и может использоваться для запитывания гаджетов, рассчитанных на 5В.

Теперь, более менее зная с чем имеем дело, можно приступать собственно к сборке мозгоподелки .

Шаг 3: Проектирование

Прежде чем приступить к создания корпуса для самоделки , обмеряем компоненты и делаем чертеж. Так в моем мозгоустройстве аккумулятор будет крепиться с помощью канцелярского зажима, который прикручен к корпусу, платы будут располагаться поверх друг друга, контакты вход/выход будут сверху в верхней части корпуса, а контакты идущие к аккумуляторам - в нижней.

У некоторых аккумуляторов бывает нестандартное положение полярности контактов, поэтому эту «нестандартность» нужно учесть в нашем устройстве, то есть добавить штырьковые разъемы. Для этого берем разъем с тремя штырьками и вырываем средний, а сами штырьки загибаем с одной стороны, чтобы было удобней прикладывать их к контактам аккумулятора. Либо взять разъем с четырьмя штырьками, крайние из которых подсоединить к положительному выводу, а средние - к отрицательному, и тем самым менять полярность контактов просто подключая аккумулятор к левой или правой паре штырьков.

Шаг 4: Изготовление корпуса

А вот теперь займемся сборкой корпуса. Для этого берем линейку и острым ножом размечаем линии, процарапывая их примерно по 10 раз, чтобы затем не прикладывать к заготовке большие усилия и уже не использовать линейку. Процарапав линии на достаточную глубину прикладываем к ним плоскогубцы и сгибаем заготовку, пока она не сломается по этим линиям. «Наломав» таким образом все необходимые детали мозгокорпуса, зачищаем их и подгоняем друг к другу. Затем крепим их к устойчивой поверхности и с помощью бормашинки делаем отверстия и прорези под винты, выключатель, входы, выходы и штырьковые разъемы.

Шаг 5: Сборка электроцепи

До того, как приступить к сборке мозгоустройства собираем сначала электроцепь, и ориентируемся при этом на представленную схему. Небольшой выключатель здесь служит для включения/отключения преобразователя постоянного тока.

Шаг 6: Окончательная сборка

С помощью клеевого пистолета склеиваем платы друг с другом, а затем и с одной их деталей корпуса. Далее склеиваем весь корпус, и привинчиваем к нему канцелярский зажим.

Через штырьковый разъем подсоединяем аккумулятор и пробуем самоделку в действии. Если она не работает, то подключаем кабель зарядки.

Шаг 7: Использование!

Что ж, теперь аккумуляторы ваших старых телефонов снова в деле!

Предложенный мной вариант корпуса конечно не идеален, но для демонстрации всей концепции сгодиться. Могу даже поспорить, что вы предложите гораздо лучшее решение 🙂

На этом все, всем мозгоудачи !

Сегодня устройства типа Power bank (автономное зарядное устройство) прочно вошли в нашу повседневную жизнь. Они значительно облегчают использование всевозможных современных энергоемких гаджетов, таких как планшеты и смартфоны, так как позволяют быстро подзарядиться практически в любых условиях, когда вы находитесь вдали от розетки.

У самых простых Power bank имеется только один тип выхода- USB, который является наиболее популярным. В более продвинутых зарядных устройствах можно найти выходы с напряжением, ставшим стандартным напряжением питания для низковольтных устройств,- 12В. Это значительно расширяет область применения таких Power bank`ов, так как от 12В работает практически любая автомобильная электроника и множество других электрических потребителей. А при использовании инвертора можно получить и 220В при желании.

Краеугольным камнем в таких Power bank`ах становится вопрос емкости. Применение современных высокоёмких Li-ion аккумуляторов позволяет создать в компактном размере источник питания достаточной емкости для того, чтобы запитать какое-либо 12 вольтовое устройство в течении нескольких часов.

К сожалению, производители зачастую экономят именно на качестве встраиваемых литиевых элементов питания для уменьшения общей стоимости зарядного устройства, что негативно сказывается на времени работы Power bank. Поэтому мы хотим рассказать вам как самому изготовить Power Bank используя комплект, состоящий из многофункционального DC-DC преобразователя, платы защиты и корпуса и высококачественные литиевые аккумуляторы распространенного типоразмера .

Нам понадобятся:
Комплект для сборки Power Bank модели HCX-284 состоящий из непосредственно многофункционального DC-DC преобразователя, платы защиты (PCM) для Li-ion аккумуляторов и металлического корпуса для 4ех Li-Ion аккумуляторов 18650. В качестве литиевых элементов возьмем 4 Li-ion аккумулятора Panasonic модели NCR18650B 3,6В емкостью 3400мАч

Преобразователь HCX-284 имеет стабилизированный 12В выход с максимальным током нагрузки 4А и 5ти вольтовый USB разъем с максимальным током 1А. В качестве зарядки для нашего Power Bank можно использовать любой 12В блок питания с штыревым разъемом размера 5,5 х 2,5 мм и максимальным током не менее 1,5А. Можно, конечно, использовать и менее мощный блок питания, но процесс заряда в этом случае может занять достаточно продолжительное время.

Принцип работы нашего Power Bank следующий:
С аккумуляторной сборки из 4ех последовательно-соединенных (4S) Li-Ion аккумуляторов мы получаем номинальное напряжение 14,8В. Точнее, это напряжение, в процессе работы, будет меняться от 16,8В (полностью заряженная батарея) до 12В (полностью разряженная). Непосредственно к аккумуляторам подключается плата защиты PCM . Она будет контролировать эти верхние и нижние напряжения, не позволяя им выйти за крайние значения и оберегая литиевые ячейки от перезаряда и переразряда.
С платы защиты напряжение подается на вход понижающего DC-DC преобразователя, который и превращает наши 16,8 - 12В с аккумуляторов в стабилизированные 12В и 5В на соответствующих разъемах.

При зарядке аккумуляторов 12 вольт с входа "DC In" стабилизатора преобразуются в 16,8В необходимые для заряда 4S Li-Ion аккумуляторной батареи. Максимальный ток, подающийся на аккумуляторы, составляет 1А и не зависит от мощности вашего блока питания. Это позволяет использовать в комплекте с HCX-284 литиевые аккумуляторы с минимальной емкостью около 2000мач, у которых ток заряда не должен превышать половины значения от емкости, т.е. примерно 1А.

Процесс сборки:

1. Склеиваем при помощи термоклея батарею из четырех Li-Ion аккумуляторов Panasonic модели NCR18650B.


Термоклей лучше использовать с низкой температурой плавления для исключения локального перегрева аккумуляторов. Обращаем внимание на качество клеевых швов- они не должны выступать за габариты батареи иначе она просто не влезет в корпус.


2. Мы используем специальные электрические изоляторы для исключения контакта никелевой сварочной ленты и корпуса аккумуляторов.


3. Свариваем Li-Ion ячейки в 4S батарею при помощи никелевой ленты 5х0,127мм и сварочного станка для контактной сварки. Паять Li-Ion аккумуляторы не рекомендуется из-за того, что они боятся перегрева, что может сильно уменьшить их ресурс. Так как токи в нашей батареи будут в пределах 3-4 ампер такой толщины ленты будет более чем достаточно.


Сразу формируем выводы всех напряжений для последующей пайки
проводами к контрольным контактам на плате PCM.



4. Устанавливаем PCM на батарею. Силовые контакты формируем используя только ленту. Это более надежно и компактнее. Контрольные напряжения подключаем к плате проводами самого минимального сечения. Мы применили МГШВ 0,2мм, но можно использовать провод и, к примеру, МГТФ 0,14мм.



Подключать контакты контроллера надо в последовательности от "минимального" к "максимальному", т.е сначала "B-", затем +3,7В, 7,4В,
11,1В и последним "В+"

5. Выводы с PCM делаем проводом ПУГВ 0,5мм. Длина выводов должна быть не более 2 см. Закрываем торцы батареи изоляционным к артоном и упаковываем аккумуляторы в тонкую термоусадочную пленку.


На этом этапе у нас получилась защищенная батарея, которую можно использовать без опаски перезарядить или переразрядить. Но на выходах, пока, мы имеем нестабилизированное напряжение, которое будет меняться в процессе разряда от 16,8В до 12В.

6. Подключаем батарею к плате стабилизатора. Для этого подсоединяем черный "минусовой" провод к контакту "P-", а красный "плюсовой" провод к контакту "P+" При этом, стабилизатор однократно моргнёт всеми тремя светодиодами.




7. Устанавливаем батарею с припаянным стабилизатором в корпус. Начинаем установку именно с батареи, затем стабилизатор. Плата стабилизатора устанавливается в специальные пазы корпуса.

8. Закрываем торцы корпуса специальными заглушками, идущими в комплекте и наклеиваем декоративные наклейки.

Все. Наш собственноручно изготовленный PowerBank готов. Проверяем работу, нажимая на единственную кнопочку, которая, при неподключенных разъемах, включает индикацию уровня заряда, которая показывает, что сейчас наши аккумуляторы полностью заряжены.

При использовании Power Bank HCX-284 надо учитывать один нюанс: выход 12В осуществлен при помощи розетки для штыревого разъема питания размером 4х1,7мм. Надо отметить, что такой типоразмер является малораспространенным и в свободной продаже его найти проблематично. Именно поэтому мы прилагаем провод с припаянным штыревым разъемом в комплект к набору HCX-284.


Давайте посчитаем итоговую емкость нашего Power Bank`а:
Мы использовали 4 аккумулятора Panasonic модели NCR18650B 3,6В емкостью 3400мач. Итого мы получаем 3,4А/ч при напряжении 14,8В.
Но у нас
на выходе 2 напряжения 5В и 12В. Также надо учитывать, что КПД преобразователя составляет около 90%.

Соответственно, при 5В емкость нашего

аккумулятора составит ((14,8*3,4)*0,9)/5 = 9,05Ач Это означает, что при пяти-вольтовой нагрузке током 1А наш Power Bank проработает около 9 часов!
При 12В емкость составит: ((14,8*3,4)*0,9)/12 = 3,77Ач

Вот, в принципе, и весь процесс. По времени, при наличии опыта и инструмента, он занимает около 1 часа.
Если вы не уверенны в своих силах, мы Power Bank с использованием любых Li-Ion аккумуляторов, присутствующих в нашем каталоге .

В нашем магазине есть уже собранные, готовые к использованию Power Bank`и на основе набора H284 .

Солнечная энергия является абсолютно бесплатным (пока 🙂), широко доступным и экологически чистым видом энергии. Многие знакомы с так называемыми фотоэлектрическими преобразователями, или солнечными панелями. Их ячейки изготавливаются из специальных полупроводниковых материалов, и когда солнечный свет попадает в них, он выбивает электроны, заставляя их отделяться от своих атомов. Когда электроны проходят сквозь клетку, они генерируют электричество.

Power Bank — практика

В общем с краткой теорией закончили. А теперь будем делать мощный и качественный Повербанк, который собирает и накапливает энергию с помощью солнечных панелей, как это происходит в предыдущим проекте . Электричество, получаемое от этих панелей, хранится в Li-Po батарее. Затем аккумуляторная батарея используется для формирования нужного питания — стабилизированных 5 В, которое используется в USB-гаджетах, чаще всего смартфонах. Power Bank также может заряжаться от внешнего источника 5 В от сетевого адаптера на 220 В. На улице он самостоятельно заряжается с помощью солнечного света — как и задумано.

Схема принципиальная

Сохраните схему чтоб увеличить

Печатная плата в архиве . Схема Повербанка на солнечных элементах состоит из двух частей. Первая — это зарядное устройство на основе MCP73831 и вторая — повышающий преобразователь на LT1302-5, который преобразует напряжение литиевого аккумулятора в 5 В.

MCP73831 — это миниатюрный контроллер заряда литий-ионных или литий-полимерных АКБ. Поскольку диапазон входного напряжения составляет 3,7 — 6 В, любое значение между этими величинами может быть использовано в качестве источника входного вольтажа. Дополнительный 5 В вход мини USB также включен в схему, чтоб зарядить Повер-банк от сети 220 В через адаптер, когда солнечного света недостаточно. Контроллер будет заряжать аккумулятор до 4.2 V в полностью безопасном режиме. Светодиод на контроллере горит в течение всего процесса заряда.

Второй каскад — повышающий преобразователь, который преобразует напряжение аккумулятора 4 В в 5 В. Он основан на микросхеме LT1302-5 — DC/DC преобразователь на фиксированное напряжение выхода 5 В. Входное напряжение LT1302-5 может быть ниже 2,2 В.

Солнечные панели, используемые в проекте, рассчитаны на 6 В и 150 мА, что обеспечивают около 1 Вт/ч в идеальных условиях. А литий-полимерная батарея тут стоит мощностью 3,7 В И 4000 мА, которая сможет дать около 15 Вт/ч. Учтите, что зарядка будет длиться гораздо больше, чем 15 часов, так как эффективность хранения и повышающего преобразования будет меньше, чем 100%. Но поскольку солнечная энергия является бесплатной — спешить некуда.



Загрузка...
Top