Что делают роботы с информацией. Что могут делать роботы и чем они отличаются друг от друга

Слово робот происходит от чешского слова «робота», что означает «каторжный труд» или «работа». Сегодня мы используем слово «робот», чтобы обозначить любую искусственную машину, которая может выполнять работу или иные действия, обычно выполняемые людьми, либо автоматически, либо с помощью дистанционного управления.

Что делают роботы?

Представьте себе, если ваша работа состоит в том, чтобы закручивать один винт на тостере. И вы делаете это снова и снова, день за днем, в течение нескольких недель, месяцев или лет. Такая работа лучше подходит роботами, чем людям. Большинство роботов сегодня используются для выполнения повторяющихся действий или работ, которые считаются слишком опасными для человека. Например, робот идеально подходит для разминирования бомб. Роботы также используются на заводах, чтобы производить такие вещи, как автомобили, конфеты и электронику. Роботы в настоящее время используются в медицине, в военной технике, для обнаружения объектов под водой, или для исследования других планет и т.д. Роботизированные технологии помогли людям, потерявшим руки или ноги. Роботы являются отличным помощниками всего человечества.

Зачем использовать роботов?

Причина использования роботов достаточно проста и понятна. Дело в том, что использовать роботов часто бывает дешевле, чем людей. Для роботов проще оборудовать рабочие места, а иногда внедрение роботов является единственным возможным способом решения некоторых задач. Роботы могут исследовать изнутри топливные резервуары, вулканы, путешествовать по поверхности Марса или в других местах, слишком опасных для людей. Роботы могут делать одно и то же снова и снова, и им не станет скучно. Они могут сверлить стены, варить трубы, красить машины, обращаться с токсичными веществами. А в некоторых ситуациях роботы намного более точны и могут сократить издержки производства из-за человеческих ошибок. Роботы никогда не болеют, им не нужно спать, они не нуждаются в пище, обходятся без выходных и, что лучше всего, они никогда не жалуются!

Из чего состоят роботы?

Роботы могут быть сделаны из различных материалов: металл, пластмасса и многое другое. Большинство роботов состоят из 3-х основных частей:

  1. Контроллер или «мозг» робота, работающий с помощью компьютерной программы. Здесь хранятся алгоритмы, с помощью которых робот выполняет различные манипуляции.
  2. Механические части: двигатели, поршни, механизмы захвата, колеса и шестеренки, благодаря которым робот способен двигаться, перемещать предметы, поворачиваться и т.д.
  3. Датчики преобразует полученную информацию в удобную форму для дальнейшей передачи. Датчики позволяют роботу ориентироваться на местности, определить размеры, форму, расстояние между объектами, направление и другие характеристики и свойства веществ. Часто на роботы устанавливают датчики давления, которые могут определять величину давления, необходимую для того, чтобы схватить предмет не повреждая его.

Искусственный интеллект

Изначально искусственный интеллект разрабатывался с целью воссоздания человеческого разума, однако в настоящее время большое количество исследований сфокусировано на так называемом . Принципы роевого интеллекта могут быть использованы, например, при создании нанороботов.

Изначально искусственный интеллект разрабатывался с целью воссоздания человеческого разума, однако в настоящее время большое количество исследований сфокусировано на так называемом роевом интеллекте - особом типе разума, который проявляется в совместной деятельности насекомых или в работе большого числа простых роботизированных механизмов. Принципы роевого интеллекта могут быть использованы, например, при создании нанороботов.

Ограничения роботов

К сожалению, роботы не могут, как в кино, думать или принимать решения. Роботы - это машины с запрограммированными движениями, которые позволяют им перемещаться в определенных направлениях с заданной последовательностью действий. ИИ позволяет роботам обрабатывать полученную информацию и даже обучаться. Но они все еще имеют существенные ограничения, так как способны понимать лишь определенные типы информации, и выполнять лишь ограниченный набор функций, заложенный в них при создании.

Применение современных промышленных роботов увеличивает производительность оборудования и выпуск продукции, улучшает качество продукции, заменяет человека на монотонных и тяжелых работах, помогает экономить материалы и энергию. Кроме того, они обладают достаточной гибкостью, чтобы использовать их при выпуске продукции средними и малыми партиями, т. е. в той области, где традиционные средства автоматизации неприменимы. Мелкосерийная продукция имеет большой рынок. Исследования показывают, что подавляющее большинство деталей, закупаемых даже военными организациями, были выпущены партиями менее 100 штук, а в Великобритании согласно проведенным оценкам примерно 75 % всех металлических деталей выпускалось партиями менее 50 штук. Роботы еще не обладают многими важнейшими качествами, присущими человеку, например не способны к разумному реагированию на непредвиденную обстановку и изменение рабочей среды, к самообучению на основе собственного опыта, использованию тонкой координации системы «рука - глаз». Роботы с захватами или подобные им применяются для выполнения манипуляционных операций, например при удалении заусенцев, литье, очистке слитков, ковке, термообработке, точном литье, обслуживании станков на погрузке-разгрузке, формовке, упаковке, размещении деталей в и складировании. Руки роботов вместо захватов могут оснащаться различными инструментами для выполнения работ, начиная с покраски распылением, нанесения клеевых и изоляционных покрытий и кончая сверлением, зенкованием, закручиванием гаек, шлифовкой, пескоструйной очисткой. Кроме того, роботы можно использовать для точечной и дуговой сварки, тепловой обработки и резания с помощью пламени или лазера, а также при очищении с помощью водяных струй. Следует отметить, что первоначальные иллюзии о возможности создать универсальный робот, способный выполнить почти любую работу - от сборки до точечной сварки, теперь в значительной степени развеяны. В настоящее время роботы приобретают специализацию, становясь покрасочными роботами, сварочными роботами, сборочными роботами и т. д.

Наконец, в отношении потенциальной замены рабочих «стальными воротничками» следует помнить, что робот может заменить только того, кто «работает, как робот». Однако недалеко то время, когда роботы смогут заменить людей не только на утомительной, повторяющейся или тяжелой работе, но и на работах, которые, как считалось раньше, требуют сноровки, приобретаемой с опытом. Поэтому вполне понятно, что у многих распространение роботов вызывает беспокойство в связи с возможным ростом безработицы.

С появлением сложных робототехнических устройств нельзя более утверждать, что роботы просто заменят людей на непривлекательных работах, однако человечеству грозит деградация, если оно, опасаясь безработицы, будет продолжать работать на нудных однообразных работах.

Передвижение из точки А в точку Б казалось нам простым с детства. Мы, люди, делаем это каждый день, каждый час. Для робота, однако, навигация - особенно через единую среду, которая постоянно изменяется, или через среду, которую он раньше не видел - сложнейшая вещь. Во-первых, робот должен быть способен воспринимать окружающую среду, а также понимать все входящие данные.

Робототехники решают первую проблему, вооружая свои машины массивом датчиков, сканеров, камер и других высокотехнологичных инструментов, которые помогают роботам оценить свое окружение. Лазерные сканеры становятся все более популярными, хотя их нельзя использовать в водной среде из-за того, что свет серьезно искажается в воде. Технология сонара кажется жизнеспособной альтернативой для подводных роботов, но в наземных условиях она куда менее точна. Кроме того, «видеть» свой пейзаж роботу помогает система технического зрения, состоящая из набора интегрированных стереоскопических камер.

Собрать данные об окружающей среде - это только полдела. Куда более сложной задачей будет обработка этих данных и использование их для принятия решений. Многие разработчики управляют своими роботами, используя предопределенную карту или составляя ее на лету. В робототехнике это известно как SLAM - метод одновременной навигации и составления карты. Составление карты здесь означает то, как робот преобразует информацию, полученную датчиками, в определенную форму. Навигация же подразумевает то, как робот позиционирует себя относительно карты. На практике эти два процесса должны протекать одновременно, в форме «курицы и яйца», что выполнимо только при использовании мощных компьютеров и продвинутых алгоритмов, вычисляющих положение на основе вероятностей.

Продемонстрировать ловкость


Роботы собирают упаковки и детали на заводах и складах уже много лет. Но в таких ситуациях они, как правило, не встречаются с людьми и практически всегда работают с одинаковыми по форме объектами в относительно свободной среде. Жизнь такого робота на заводе скучна и заурядна. Если же робот хочет работать на дому или в больнице, для этого ему понадобится обладать продвинутым осязанием, способностью обнаруживать людей поблизости и безупречный вкус в плане выбора действий.

Этим навыкам робота крайне сложно обучить. Обычно ученые вообще не обучают роботов прикосновениям, программируя их на провал, если они вступают в контакт с другим объектом. Однако за последние пять лет или около того были достигнуты значительные успехи в совмещении податливых роботов и искусственной кожи. Податливость относится к уровню гибкости робота. Гибкие машины более податливы, жесткие - менее.

В 2013 году исследователи из Georgia Tech создали роботизированный манипулятор с пружинными суставами, которые позволяют манипулятору сгибаться и взаимодействовать с предметами, подобно человеческой руке. Затем они покрыли все это «кожей», способной распознавать давление или прикосновение. Некоторые виды кожи роботов содержат шестигранные микросхемы, каждая из которых оснащена инфракрасным сенсором, который регистрирует любое приближение ближе чем на сантиметр. Другие оснащаются электронными «отпечатками пальцев» - ребристой и шероховатой поверхностью, которая улучшает сцепление и облегчает обработку сигнала.

Объедините эти высокотехнологичные манипуляторы с продвинутой системой зрения - и вы получите робота, который может сделать нежный массаж или перебрать папку с документами, выбрав нужный из огромной коллекции.

Поддержать беседу


, один из основателей компьютерной науки, сделал в 1950 году смелый прогноз: однажды машины смогут говорить так свободно, что вы не сможете отличить их от людей. Увы, пока роботы (и даже Siri) не оправдали ожиданий Тьюринга. Все потому, что распознавание речи значительно отличается от обработки естественного языка - то, что делают наши мозги, извлекая смысл из слов и предложений в процессе беседы.

Первоначально ученые думали, что повторить это будет так же просто, как подключить правила грамматики к памяти машины. Но попытка запрограммировать грамматические примеры для каждого отдельного языка попросту провалилась. Даже определить значения отдельных слов оказалось весьма сложно (ведь есть такое явление, как омонимы - ключ от двери и ключ скрипичный, например). Люди научились определять значения этих слов в контексте, опираясь на свои умственные способности, развитые за многие годы эволюции, но разбить их снова на строгие правила, которые можно положить на код, оказалось просто невозможно.

В результате многие роботы сегодня обрабатывают язык, основываясь на статистике. Ученые скармливают им огромные тексты, известные как корпусы, а затем позволяют компьютерам разбивать длинные тексты на куски, чтобы выяснить, какие слова часто идут вместе и в каком порядке. Это позволяет роботу «учить» язык, основываясь на статистическом анализе.

Научиться новому


Представим, что кто-то, кто никогда не играл в гольф, решил научиться размахивать клюшкой. Он может прочитать книгу об этом, а затем попробовать или же наблюдать за тем, как практикуется известный гольфист, и потом попробовать самостоятельно. В любом случае освоить азы можно будет просто и быстро.

Робототехники сталкиваются с определенными проблемами, когда пытаются построить автономную машину, способную обучаться новым навыкам. Один из подходов, как в случае с гольфом, заключается в том, чтобы разбить активность на точные шаги, а затем запрограммировать их в мозге робота. Это предполагает, что каждый аспект активности нужно разделить, описать и закодировать, что не всегда-то и легко сделать. Существуют определенные аспекты в размахивании клюшкой для гольфа, которые и словами-то сложно описать. Например, взаимодействие запястья и локтя. Эти тонкие детали легче показать, чем описать.

За последние годы ученые добились определенного успеха в обучении роботов имитировать человека-оператора. Они называют это имитационным обучением, или обучением по демонстрации (методика LfD). Как они это делают? Вооружают машины массивами широкоугольных и масштабирующих камер. Это оборудование позволяет роботу «видеть» учителя, выполняющего определенные активные процессы. Обучающие алгоритмы обрабатывают эти данные для создания математической карты функций, которая объединяет визуальный ввод и желаемые действия. Конечно, роботы LfD должны уметь игнорировать определенные аспекты поведения своего учителя - вроде зуда или насморка - и справляться с похожими проблемами, которые рождаются из-за разницы в анатомии робота и человека.

Обманывать


Любопытное искусство обмана развивалось еще у животных, чтобы обойти конкурентов и не быть съеденным хищниками. На практике обман как искусство выживания может быть весьма и весьма эффективным механизмом самосохранения.

Роботам же научиться обманывать людей или других роботов может быть невероятно сложно (и, возможно, хорошо для нас с вами). Обман требует наличия воображения - способности формировать идеи или образы внешних объектов, не связанных с чувствами - а у машины его, как правило, нет. Они сильны в прямой обработке данных с датчиков, камер и сканеров, но не могут формировать концепции, которые выходят за пределы сенсорных данных.

С другой стороны, роботы будущего могут лучше разбираться в обмане. Ученые Georgia Tech смогли передать некоторые навыки обмана белок роботам в лаборатории. Сначала они изучали хитрых грызунов, которые защищают свои тайники с пищей, заманивая конкурентов в старые и неиспользуемые хранилища. Затем закодировали это поведение в простые правила и загрузили в мозги своих роботов. Машины смогли использовать эти алгоритмы для определения, когда обман может быть полезным в конкретной ситуации. Следовательно, могли обмануть своего компаньона, заманив его в другое место, в котором нет ничего ценного.

Предвидеть действия человека


В «Джетсонах» робот-горничная Рози была в состоянии поддерживать беседу, готовить еду, убирать и помогать Джорджу, Джейну, Джуди и Элрою. Чтобы понять качество сборки Рози, достаточно вспомнить один из начальных эпизодов: мистер Спейсли, босс Джорджа, приходит в дом Джетсонов на ужин. После трапезы он вынимает сигару и помещает ее в рот, а Рози бросается вперед с зажигалкой. Это простое действие представляет собой сложное поведение человека - умение предвидеть, что будет дальше, на основе того, что только что произошло.

Как и обман, предвосхищение человеческих действий требует от робота представления будущего состояния. Он должен быть в состоянии сказать: «Если я вижу, что человек делает А, значит, как я могу предположить на основе прошлого опыта, скорее всего, он сделает Б». В робототехнике этот пункт был крайне сложным, но люди делают определенный прогресс. Команда Корнелльского университета разработала автономного робота, который мог реагировать на основе того, как компаньон взаимодействует с объектами окружающей среды. Для этого он использует пару 3D-камер, чтобы получить изображение окружения. Затем алгоритм определяет ключевые объекты в комнате и выделяет их на фоне остальных. Затем, используя огромное количество информации, полученной в результате предыдущих тренировок, робот вырабатывает набор определенных ожиданий движений от персоны и объектов, которые она трогает. Робот делает выводы относительно того, что будет дальше, и действует соответственно.

Иногда Корнелльские роботы ошибаются, но довольно уверенно продвигаются вперед, в том числе и по мере того, как улучшаются технологии камер.

Координировать деятельность с другими роботами


Строительство единой крупномасштабной машины - даже андроида, если хотите - требует серьезных вложений времени, энергии и денег. Другой подход предполагает развертывание армии из более простых роботов, которые могут действовать вместе для достижения сложных задач.

Возникает ряд проблем. Робот, работающий в команде, должен уметь хорошо себя позиционировать в связи с товарищами и быть в состоянии эффективно общаться - с другими машинами и оператором-человеком. Для решения этих проблем ученые обратились к миру насекомых, которые используют сложное роевое поведение для поиска еды и решают задачи, которые приносят пользу всей колонии. Например, изучая муравьев, ученые поняли, что отдельные особи используют феромоны для связи друг с другом.

Роботы могут использовать эту же «феромонову логику», только полагаться на свет, а не на химические вещества, при общении. Работает это так: группа крошечных роботов рассредоточена в ограниченном пространстве. Сначала они исследуют эту область случайным образом, пока один не натыкается на световой след, оставленный другим ботом. Он знает, что нужно идти по следу, и идет, оставляя собственный след. По мере того как следы сливаются в один, все больше и больше роботов следуют друг за другом гуськом.

Самокопироваться


Господь сказал Адаму и Еве: «Плодитесь и размножайтесь, и наполняйте землю». Робот, который получил бы такую команду, почувствовал бы смущение или разочарование. Почему? Потому что он не способен размножаться. Одно дело построить робота, но совсем другое - создать робота, который сможет делать копии самого себя или регенерировать утраченные или поврежденные компоненты.

Что примечательно, роботы могут и не брать людей за пример репродуктивной модели. Возможно, вы заметили, что мы не делимся на две одинаковые части. Простейшие, однако, делают это постоянно. Родственники медуз - гидры - практикуют форму бесполого размножения, известную как бутонизацию: небольшой шарик отделяется от тела родителя, а затем отрывается, чтобы стать новым, генетически идентичным индивидуумом.

Ученые работают над роботами, которые смогут выполнять такую же простую процедуру клонирования. Многие из этих роботов построены из повторяющихся элементов, как правило кубов, которые сделаны по образу и подобию одного куба, а также содержат программу саморепликации. У кубиков есть магниты на поверхности, поэтому они могут присоединяться и отсоединяться от других кубов поблизости. Каждый кубик делится на две части по диагонали, поэтому каждая половина может существовать независимо. Весь же робот содержит несколько кубиков, собранных в определенную фигуру.

Действовать из принципа


Когда мы ежедневно общаемся с людьми, мы принимаем сотни решений. В каждом из них мы взвешиваем каждый наш выбор, определяя, что есть хорошо, а что есть плохо, честно и нечестно. Если бы роботы хотели быть похожи на нас, им нужно было бы понять этику.

Но как и в случае с языком, закодировать этическое поведение крайне сложно главным образом потому, что единого набора общепринятых этических принципов не существует. В разных странах существуют разные правила поведения и разные системы законов. Даже в отдельных культурах региональные различия могут повлиять на то, как люди оценивают и измеряют свои действия и действия окружающих. Попытка написать глобальную и подходящую всем роботам этику оказывается практически невозможной.

Именно поэтому ученые решили создавать роботов, ограничивая масштабы этической проблемы. Например, если машина будет работать в определенной среде - на кухне, скажем, или в палате пациента - у нее будет гораздо меньше правил поведения и меньше законов для принятия этически обоснованных решений. Для достижения этой цели инженеры-робототехники вводят основанный на этике выбор в алгоритм обучения машины. Выбор этот основывается на трех гибких критериях: к чему хорошему приведет действие, какой вред оно нанесет и мере справедливости. Используя этот тип искусственного интеллекта, ваш будущий домашний робот сможет точно определить, кто в семье должен мыть посуду, а кому достанется пульт от телевизора на ночь.

Чувствовать эмоции

«Вот мой секрет, он очень прост: зорко одно лишь сердце. Самого главного глазами не увидишь».

Если это замечание Лиса из «Маленького принца» Антуана де Сент-Экзюпери верно, то роботы не увидят самого прекрасного и лучшего в этом мире. В конце концов, они отлично зондируют мир вокруг, но не могут превращать сенсорные данные в конкретные эмоции. Они не могут увидеть улыбку любимого человека и почувствовать радость, или же зафиксировать гневную гримасу незнакомца и задрожать от страха.

Именно это, больше чем что-либо другое в нашем списке, отделяет человека от машины. Как научить робота влюбляться? Как запрограммировать разочарование, отвращение, удивление или жалость? Стоит ли вообще пытаться?

Некоторые думают, что стоит. Они считают, что роботы будущего будут совмещать когнитивные и эмоциональные системы, а значит, лучше работать, быстрее учиться и эффективнее взаимодействовать с людьми. Верьте или нет, прототипы таких роботов уже существуют, и они могут выражать ограниченный диапазон человеческих эмоций. Nao, робот, разработанный европейскими учеными, обладает эмоциональными качествами годовалого ребенка. Он может выражать счастье, злость, страх и гордость, сопровождая эмоции жестами. И это только начало.

ПРОГРАММНЫЕ

АДАПТИВНЫЕ

ИНТЕЛЛЕКТУАЛЬНЫЕ

Загружать или

разгружать

технологическое оборудование;

окрашивать изделия простой формы;

резать плоские материалы;

манипулировать рабочим инструментом;

вести точечную сварку

Собирать детали в изделие;

контролировать качество изготовления;

вести дуговую сварку;

вести зачистку и шлифование;

наносить покрытия на изделия сложной формы;

сортировать изделия;

перемещаться по заданной траектории;

резать материалы сложной формы;

переносить хрупкие предметы;

мыть окна;

выполнять заказы в кафе

Перемещаться по неизвестной местности;

отыскивать заданные предметы;

находить наружные и внутренние дефекты;

распознавать препятствия;

По виду выполняемых операций промышленные роботы делят на вспомогательные и технологические . Вспомогательные роботы выполняют операции по установке заготовок на технологическую машину и их снятию после обработки. В качестве рабочего органа в них используется захватное устройство. По-существу, вспомогательные роботы имитируют действия рабочего по обслуживанию станка. При этом сохраняется традиционная, приспособленная к возможностям человека, технология производства. Технологические роботы ведут непосредственную обработку заготовок. В качестве рабочего органа в них используется рабочий инструмент: сварочные клещи, окрасочный пистолет, абразивная головка и т.п.

По мере развития технологических роботов открываются ранее недоступные для человека быстрые и точные операции резки материалов, сварки, окраски изделий, выбора оптимальных режимов обработки, хранения неограниченных объемов технологической информации, измерения характеристик изделий. Это позволило создавать принципиально новые производственные технологии, которые не могут применяться без робототехники.

В зависимости от выполняемых задач различают манипуляционные, мобильные, информационно-управляющие роботы.

Манипуляционный робот предназначен для выполнения механических операций, подобных выполняемым человеком, но с изменением масштаба, размеров и усилий. К ним относятся перенос объекта между заданными точками, перемещение объекта по заданной траектории, обработка объекта с помощью инструмента на рабочем органе. Большинство роботов, применяемых в машиностроении, представляют собой автоматические манипуляторы первого поколения. Развитие дистанционного управления манипуляционными роботами позволило выполнять действия в космосе, вести межконтинентальные хирургические операции. В 2000 г. во Франции была впервые проведена операция с помощью манипулятора, управляемого через телекамеру хирургом из США.

Мобильный робот перемещается в пространстве между заданными точками. Исследовательские мобильные роботы могут доставлять пробы из недоступных для человека мест. Аварийно-спасательные мобильные роботы предназначены для вывоза людей через опасные зоны. Специализированные мобильные роботы разрабатывают для доставки взрывчатых и опасных материалов, военных операций и борьбы с терроризмом, обезвреживания невзорвавшихся боеприпасов, разминирования и других задач, выполнение которых опасно для человека. Технологические мобильные роботы применяют в гибких производственных системах для перевозки грузов между единицами технологического оборудования.

Информационно-управляющий робот имитирует и расширяет информационно-управляющие возможности человека. Он может не оснащаться манипулятором. Таким роботом является дистанционно управляемая самоходная тележка, оснащенная бортовыми телекамерами, пробоотборниками, измерительными приборами. Роботы ведут сбор информации от бортовых датчиков, ее обработку по заданным алгоритмам, накопление или передачу информации оператору, автоматическую выработку управляющих команд в зависимости от полученной информации. В отличие от человека информационно-управляющий робот может дополнительно извлекать информацию об объектах при отсутствии освещенности и за невидимым препятствием, распределении теплового поля по поверхности объекта. Его применение позволяет увеличить скорость работы оборудования, ограниченную психофизиологическими возможностями оператора, накапливать информацию о прошлом управлении, прогнозировать развитие процесса, сопоставлять информацию от разных датчиков, определять свойства неизвестных объектов в любой среде. К информационно-управляющим роботам относятся контрольно-измерительные роботы для измерения параметров изделий в процессе изготовления.

Развернутая классификация промышленных роботов дополнительно включает такие признаки, как:

    вид производства (литейное, кузнечно-прессовое, сборочное, металлорежущее, сварочное, термообрабатывающее);

    система координат манипулятора (цилиндрическая, сферическая, прямоугольная, угловая и др.);

    грузоподъемность (сверхлегкие  до 1 кг, легкие  до 10 кг, средние  до 200 кг, тяжелые  до 1000 кг);

    степень мобильности (стационарные или подвижные);

    конструктивное исполнение (встроенные в оборудование, напольные, подвесные);

    тип привода звеньев (пневматический, гидравлический, электромеханический);

    управление перемещением звена между заданными точками (цикловое, позиционное, контурное).

Технические возможности роботов оценивают номинальной грузоподъемностью, размерами и формой рабочей зоны, максимальным перемещением звеньев, временем перемещения звеньев, скоростью и ускорением перемещения звеньев, погрешностью позиционирования рабочего органа, усилием и временем захватывания объекта, временем отпускания объекта, максимальным и минимальным размерами объекта манипулирования, числом одновременно управляемых приводов перемещения, числом каналов связи с оборудованием, давлением жидкости или воздуха, потреблением энергии, наработкой на отказ, сроком эксплуатации, массой и габаритами.

Развитие промышленной робототехники идет в направлениях:

    переход от загрузочно-разгрузочных роботов по обслуживанию технологического оборудования к технологическим роботам, выполняющим основные операции, такие как механическая обработка материалов, сварка, нанесение покрытий;

    объединение отдельных роботизированных участков в гибкую производственную систему, способную выполнять разные заказы на одной технологической линии;

    повышение доли адаптивных роботов, способных приспосабливаться к изменениям технологической среды;

    создание промышленных роботов для немашиностроительных отраслей, таких как горное дело, сельское хозяйство, легкая промышленность, микроэлектроника, медицина, транспорт.

Разновидность робота, обычно изображаемого в кино и мультфильмах, с гуманоидными чертами и поведением, имеет мало общего с роботами, которые сконструированы в инженерных лабораториях по всему миру.

Это несоответствие объясняется двумя причинами: оптимальная форма для работы редко напоминает телосложение человека, а человеческое поведение слишком сложно для того, чтобы быть воплощенным в компьютерной программе, годной для управления действиями робота.

Тем не менее инженеры преуспели в разработке робота, который может подражать отдельным функциям человека. Как показано на иллюстрации, механические руки робота, называемые манипуляторами, могут держать и поворачивать предметы почти так же, как это делают руки человека. Электронные глаза позволяют роботу воспринимать окружающие предметы и взаимодействовать с ними.

Простая рука робота, называемая манипулятором, состоит из двух пальцев, которые открываются и закрываются, чтобы взять предмет. Манипулятор, соединенный с вращающимися суставами, может двигать предметы вверх и вниз и вращать их во всех направлениях. Электронный сенсор позволяет пальцам манипулятора регулировать силу сжатия.

Ученые-специалисты еще не создали полноценно функционирующего робота-гуманоида. Тем не менее специализированные роботы могут имитировать многие ограниченные человеческие функции.

Цифровое зрение

Глаз робота состоит из телевизионной камеры, которая фиксирует визуальные образы, и микропроцессора, преобразующего эти образы в электрические сигналы.

Когда глаз робота фокусируется на предмете (внизу), микропроцессор производит электрический образ (справа).

Душа робота

Вместо мозга роботом управляет компьютерная программа. Программа получает данные из сенсора, затем обрабатывает информацию, чтобы определить, как роботу следует на нее реагировать.

Ползать, а не бегать

Ученым еще предстоит создать настоящего мобильного робота. Колеса предоставляют роботам простейшую возможность передвижения, однако не подходят для роботов, которым приходится иметь дело с неровными поверхностями, например, с лестницей. Одним из возможных вариантов могут стать многоножки, которые помогут роботу сохранить устойчивость на неустойчивой поверхности.



Загрузка...
Top