Электросхема стиральной машины ардо. Устранение неисправностей ардо

Чтобы поиск проводов, спрятанных под слоем штукатурки, не стал настоящей проблемой при ремонте квартиры, достаточно иметь в своем арсенале домашнего мастера индикатор скрытой проводки.

Поиск проводки

Существует множество разнообразных вариантов этих приборов заводского изготовления (например, популярный детектор «Дятел»), но можно собрать его и собственными руками. Для этого рассмотрим варианты конструкторских решений подобной задачи.

Виды конструкций искателя скрытой проводки

В зависимости от принципов работы, такие детекторы принято разделять по физическим характеристикам электропроводки:

  • электростатические – осуществляющие свою функции по определению электрического поля, образуемого напряжением при подключении электричества. Это самая простая конструкция, которую легче всего изготовить своими руками;
  • электромагнитные – работающие за счет обнаружения электромагнитного поля, создаваемого электрическим током в проводах;
  • индуктивные детекторы металла – работающие подобно металлоискателю. Обнаружение металла проводников обесточенной проводки происходит за счет появления изменений в электромагнитном поле, создаваемом самим детектором;
  • комбинированные приборы заводского изготовления, имеющие повышенную точность и чувствительность, но более дорогие по сравнению с остальными. Используются профессиональными строителями для работы в больших масштабах, где необходима высокая точность и производительность.

Также существуют искатели, которые входят в конструкцию многофункциональных устройств (например, детектор скрытой проводки входит в схему конструкции многофункционального устройства обслуживания электросетей «Дятел»).


Сигнализатор скрытой проводки Е121 Дятел

Такие устройства как «Дятел», позволяют соединить в одном приборе сразу несколько полезных девайсов.

Использование индикатора напряжения в качестве детектора скрытой проводки

Наиболее простым способом найти скрытую электропроводку, будет применение усовершенствованного индикатора напряжения, имеющего автономное питание, усилитель и звуковое оповещение (так называемая звуковая отвертка).


Индикатор напряжения с усилителем

В данном случае не нужно ничего мастерить своими руками и не требуется никаких модификаций в самом инструменте, а лишь только использовать его возможности с другой целью. Касаясь рукой жала отвертки, проводя ей по стене, можно обнаружить скрытую электропроводку, находящуюся под напряжением.


Использование индикатора для поиска проводки

Электрическая схема в данном случае будет реагировать на электромагнитные наводки, исходящие от проводки.

Сооружение детектора скрытой проводки своими руками по схеме с полевым транзистором

Наиболее простым по конструкции и легким в изготовлении индикатором скрытой проводки, является детектор, работающий по принципу регистрации электрического поля.

Именно его рекомендуется сделать своими руками, если отсутствуют продвинутые навыки в электротехнике.
Для изготовления простейшего детектора срытой проводки, схема которого основана на использовании полевого транзистора, понадобятся такие детали и инструменты:

  • паяльник, канифоль, припой;
  • канцелярский нож, пинцет, кусачки;
  • собственно сам полевой транзистор (любой из КП303 или КП103);
  • динамик (можно от стационарного телефона) с сопротивлением от 1600 до 2200 Ом;
  • элемент питания (батарейка от 1,5 до 9 В);
  • выключатель;
  • небольшая пластиковая емкость для монтажа в ней деталей;
  • провода.

Монтаж самодельного искателя

При работе с полевым транзистором, уязвимым к электростатическому пробою, необходимо заземлить паяльник и пинцет, и не касаться выводов пальцами.

Принцип действия прибора простой – электрическое поле изменяет толщину n-p перехода исток-сток, вследствие чего изменяется его проводимость.

Поскольку электрическое поле изменяется с частотой сети, то в динамике будет слышен характерный гул, (50Гц), усиливающийся по мере приближения к электропроводке. Здесь важно не перепутать выводы транзистора, поэтому нужно свериться с маркировкой выводов.


Маркировка выводов КП103

Поскольку управляющим выводом, реагирующим на изменения электрического поля, в данной конструкции является затвор, то полевой транзистор лучше выбрать в металлическом корпусе, который соединен с затвором.


Полевой транзистор в металлическом корпусе

Таким образом, корпус транзистора будет служить приемной антенной сигнала электропроводки. Сборка данного искателя напоминает составление простейшей электрической цепи в школе, поэтому не должен вызвать трудностей даже у начинающего мастера.


Наглядный опыт с полевым транзистором

Для визуализации процесса обнаружения электропроводки, параллельно цепи исток-сток можно подключить миллиамперметр или стрелочный индикатор от старого магнитофона с балластным резистором, номиналом 1-10 кОм (подобрать опытным путем).


Индикатор от магнитофона

При закрывании транзистора (приближении к проводке) показания индикатора будут увеличиваться, указывая на присутствие электрического поля и напряжения в скрытой электропроводке. Ввиду простоты конструкции монтаж навесной, на одножильных проводах, обладающих необходимой упругостью.

Поиск электромагнитного излучения проводки

Ещё одним вариантом самодельного детектора скрытой проводки является применение миллиамперметра, подключённого к высокоомной катушке индуктивности.


Самодельные искатели проводки

Катушка может быть самодельной, выполненной в виде дуги, или можно применить первичную обмотку от трансформатора, удалив часть магнитопровода.


Трансформатор в качестве приемной антенны

Данный детектор не требует питания – благодаря индуктивности, приемная катушка будет действовать как обмотка трансформатора тока, в которой будет индуцироваться переменный ток, на который будет реагировать миллиамперметр.

Многие мастера применяют головку от старого магнитофона или плеера в качестве приемной антенны. В этом случае, если сохранился в работающем состоянии усилительный тракт, то его используют целиком, вынимая головку, подключая ее экранированным кабелем для удобства поиска.


Аудиоплеер с головкой на конце кабеля

Как и в первом случае, в динамике будет слышно гудение 50Гц, а его интенсивность будет зависеть не только от расстояния, но и силы тока, протекающего в проводах.

Усовершенствованные самодельные детекторы проводки

Большую чувствительность, избирательность и дальность обнаружения дают детекторы скрытой электропроводки, изготовленные с несколькими усилительными каскадами на базе биполярных транзисторов или операционных усилителей с элементами логических микросхем.


Схема и внешний вид искателя на операционном усилителе

Для самостоятельного изготовления прибора по данным схемам необходим хотя бы минимальный опыт в радиоделе с пониманием принципов взаимодействий применяемых радиодеталей. Не вдаваясь в принципы работы, можно выделить два существенно различающихся направления:

  • усиление сигнала с последующим его отображением в виде отклонения стрелки индикатора или увеличения интенсивности звучания. Здесь усовершенствуются схемы на базе полевого транзистора или приемной антенны в виде катушки индуктивности с добавлением усилительных каскадов;

Простая схема детектора проводки с усилителем на биполярных транзисторах
  • использование интенсивности издаваемого электропроводкой электромагнитного поля для изменения частоты визуальных сигналов и тона звучания звукового оповещения. Тут приемный элемент (полевой транзистор или антенна) включается в схему управления частотой генератора импульсов (одновибратора, мультивибратора) на базе биполярных транзисторов, логической или операционной микросхемы.
Схема сигнализатора проводки на базе полевого транзистора и мультивибратора

Данные детекторы, хотя и наиболее просты в изготовлении, имеют существенные недостатки. Это небольшой диапазон обнаружения, а также необходимость наличия напряжения в скрытой электропроводке.

Поиск металла электропроводки

Чтобы обнаружить проводку в железобетонных конструкциях или под значительной толщиной, без возможности подачи на провода напряжения, необходимо использовать более сложные и точные конструкции детекторов, работающих подобно металлоискателям.


Работа с профессиональным прибором

Самостоятельное изготовление таких приборов экономически неоправданно, а также требует достаточно глубоких познаний в радиотехнике, наличия элементной базы и измерительного оборудования. Но опытный мастер, для пробы своих сил и собственного удовольствия может использовать имеющиеся в сети схемы металлоискателей, и своими руками изготовить подобные устройства.


Схема металлоискателя с описанием его работы

Для менее опытных мастеров, в случае необходимости обнаружения скрытой проводки без наличия напряжения, будет проще и выгодней приобрести один из таких инструментов как BOSCH, SKIL «Дятел», Mastech и другие.


Универсальный детектор проводки BOSCH
Универсальный детектор Mastech

Искатель проводки на Android

У владельцев планшетных компьютеров и некоторых смартфонов на базе Android, есть возможность использовать свои девайсы в качестве детекторов скрытой проводки.


Смартфон в роли детектора проводки

Для этого необходимо скачать соответствующее программное обеспечение в GooglePlay. Принцип действия состоит в том, что в данных мобильных устройствах имеется модуль, выполняющий функции компаса для осуществления навигации.

При использовании соответственных программ, данный модуль используется в качестве металлоискателя.


Программа Metal Sniffer, добавляющая устройствам Android функцию металлоискателя

Чувствительности данного металлодетектора на хватит для поиска кладов под землёй, но для обнаружения металла проводов на расстоянии в несколько сантиметров под слоем штукатурки его должно хватить.

Но следует помнить, что без применения специализированных приборов, или использования профессионального металлоискателя, способного различать металлы, обнаружить скрытую в железобетонных панелях электропроводку с помощью импровизированного детектора на базе Android будет невозможно.

При всех строительно-монтажных работах необходимо точно знать расположение трасс различных трубопроводов и кабельных линий. Для выявления трасс подземных коммуникаций иногда приходится прибегать к разрытию грунта. Это вызывает удорожание работ, а иногда приводит к повреждению самих коммуникаций. Мной изготовлен прибор, позволяющий производить определение трасс различных металлических трубопроводов и кабелей при закладке их на глубину до 10 м. Длина исследуемого участка достигает 3 км. Погрешность определения трассы трубопровода при закладке на глубине 2 м, не превышает 10 см. Он может быть использован для определения трасс трубопроводов и кабелей, заложенных под водой. Принцип работы трассоискателя основан на обнаружении переменного электромагнитного поля, которое искусственно создается вокруг исследуемого кабеля или трубопровода. Для этого генератор звуковой частоты подключается к исследуемому трубопроводу или кабелю и заземляющему штырю. Обнаружение электромагнитного поля на всем протяжении трассы производится с помощью портативного приемника, снабженного ферритовой антенной, обладающей ярко выраженной направленностью. Катушка магнитной антенны с конденсатором образует резонансный контур, настроенный на частоту звукового генератора 1000 Гц. Напряжение звуковой частоты, наведенное в контуре полем трубопровода, поступает в усилитель, к выходу которого подключены головные телефоны. При желании можно использовать и визуальный индикатор - микроамперметр. Для питания генератора используется сетевой блок или аккумуляторная батарея 12 Вольт. Приемное устройство питается от двух элементов А4.

Описание схемы трассоискателя. На рис. 1 схема тонального генератора. RC-генератор собран на транзисторе Т1 и работает в диапазоне 959 – 1100 Гц. Плавная регулировка частоты осуществляется переменным резистором R 5. В коллекторную цепь транзистора Т 2, который служит для согласования генератора Т1 с фазоинвертором Т3 с помощью выключателя Вк1 могут подключаться контакты реле Р1 предназначенного для манипуляции колебаниями генератора Т1 с частотой 2-3 Гц. Такая манипуляция необходима для четкого выделения сигналов в приемном устройстве при наличии помех и наводок от подземных кабелей и воздушных цепей переменного тока. Частота манипуляции определяется ёмкостью конденсатора С7. Предоконечный и оконечный каскады выполнены по двухтактной схеме. Вторичная обмотка выходного трансформатора Тр3 имеет несколько выходов. Это позволяет подключать к выходу различную нагрузку, которая может встретится на практике. При работе с кабельными линиями требуется подключение более высокого напряжения 120-250 Вольт. На Рис.2 изображена схема сетевого блока питания со стабилизацией выходного напряжения 12В.


Принципиальная схема приемного устройства с магнитной антенной - Рис 3. Оно содержит колебательный контур L1 C1. Напряжение звуковой частоты, наведенное в контуре L1 C1 через конденсатор С2 поступает на базу транзистора Т1 и далее усиливается последующими каскадами на транзисторах Т2 и Т3. Транзистор Т3 нагружен на головные телефоны. Не смотря на простоту схемы, приемник обладает достаточно большой чувствительностью. Конструкция и детали трассоискателя. Генератор собран в корпусе и из деталей имеющегося усилителя низкой частоты, переделанного по схеме рис.1,2 . На переднюю панель выведены ручки регулятора частоты R5, и регулятора выходного напряжения R10. Выключатели Вк1 и Вк2 – обычные тумблеры. В качестве трансформатора Тр1 можно использовать межкаскадный трансформатор от старых транзисторных приемников "Атмосфера”, "Спидола” и пр. Он собран из пластин Ш12, толщина пакета 25мм, первичная обмотка 550 витков провода ПЭЛ 0.23, вторичная – 2 х100 витков провода ПЭЛ 0.74. Трансформатор Тр2 собран на таком же сердечнике. Его первичная обмотка содержит 2 х110 витков провода ПЭЛ 0.74, - вторичная 2 х 19 витков провода ПЭЛ 0.8. Трансформатор Тр3 собран на сердечнике Ш-32, толщина пакета 40 мм; первичная обмотка содержит 2 х 36 витков провода ПЭЛ 0.84; вторичная обмотка 0-30 содержит 80 витков; 30-120 - 240 витков; 120-250 – 245 витков провода 0.8. Иногда в качестве Т3 мной использовался силовой трансформатор 220 х 12+12 В. При этом вторичная обмотка 12+12 В включалась как первичная, а первичная как выходная 0 – 127 - 220. Транзисторы Т4-Т7 и Т8, должны быть установлены на радиаторы. Реле Р1 типа РСМ3.

Монтаж усилителя приемного устройства трассоискателя сделан на печатной плате которая вместе с элементами питания А4 и выключателем Вк1 закреплена в коробке из пластика. В качестве штанги приемного устройства мной приспособлена лыжная палка нижняя часть которой обрезана по росту для удобства пользования. В верхней части ниже ручки крепится коробка с усилителем. В нижней части перпендикулярно штанге крепится пластиковая трубка с ферритовой антенной. Ферритовая антенна состоит из ферритового сердечника Ф-600 размером 140х8 мм. Антенная катушка разбита на 9 секций по 200 витков в каждой провода ПЭШО 0.17 индуктивность ее 165 мГн
Налаживание генератора удобно производить с помощью осциллографа. Перед включением нагрузить выходную обмотку Тр3 на лампочку 220 В х 40 Вт. Проверить осциллографом или головными телефонами через конденсатор 0.5 прохождение звукового сигнала от первого до выходного каскада. Резистором Р5 установить по частотомеру частоту 1000 Гц. Вращая резистор Р10 проверить по свечению лампочки регулировку уровня выходного сигнала. Настройку приемника следует начинать с настройки контура L1C1 на заданную резонансную частоту. Проще всего это сделать с помощью звукового генератора и указателя уровня. Подстройку контура можно производить изменением емкости конденсатора С1 или перемещением секций обмоток Катушки L1.


Исходным пунктом для начала поиска трассы должно быть место, где возможно соединение генератора с трубопроводом или кабелем. Провод, соединяющий генератор с трубопроводом должен быть как можно короче и имел сечение не менее 1,5-2 мм. Заземляющий штырь вбивается в землю в непосредственной близости от генератора на глубину не менее 30-50 см. Место, где вбит штырь, должно быть в стороне от пролегающей трассы на 5-10 м. С помощью приемника, обнаружив зону наибольшей слышимости сигнала, уточняют зону направления трассы, поворачивая магнитную антенну в горизонтальной плоскости. При этом следует сохранять постоянную высоту антенны над уровнем почвы. Наибольшая громкость сигнала получается, когда ось антенны направлена перпендикулярно направлению трассы. Четкий максимум сигнала получается, если антенна направлена точно над линией трассы. Если трасса имеет обрыв, то в этом месте и далее сигнал будет отсутствовать. Подземные силовые кабели, находящиеся под напряжением, могут быть обнаружены с помощью одного только приемного устройства, так как вокруг них имеется значительное электромагнитное переменное поле. При поиске трасс обесточенных подземных кабелей, генератор трассоискателя подключается к одной из жил кабеля. В этом случае обмотка выходного трансформатора подключается полностью, чтобы получить максимальный уровень сигнала. Место заземления или обрыва кабеля обнаруживается по пропаданию сигнала в телефонах приемного устройства, когда оператор будет находиться над точкой повреждения кабеля. Мной было изготовлено 6 подобных устройств. Все они показали отличные результаты при эксплуатации, в некоторых случаях, даже не производилась настройка трассоискателя.

Третий глаз (Часть 3)

Приборы для поиска и диагностики подземных инженерных коммуникаций

Благодаря многонаправленным антеннам повышается чувствительность приборов и уменьшается вероятность ошибок. Оператору больше нет необходимости ходить зигзагами по исследуемой территории – стоит только нажать на кнопку питания и выбрать тип нужной трассы, и прибор сам найдет ее и отобразит на экране. Такой подход позволяет пользоваться локатором даже работникам с невысокой квалификацией и практически без специального обучения.

Акустические течеискатели (локаторы)

Достаточно широко применяется ряд методов нахождения подземных коммуникаций, основанных на акустической локации. Часто такие методы используются для поиска утечек воды и газа в трубопроводах из любых металлических и неметаллических материалов. Поэтому приборы для поиска утечек так и называются – течеискатели.

Акустический неактивный метод

Вытекая из трубы, жидкость или газ издает шум, который может уловить акустический течеискатель с функцией пассивного обнаружения, иначе говоря – неактивный акустический детектор. Акустические датчики-микрофоны, которые могут быть контактными, прикладываемыми непосредственно к грунту, или бесконтактными, улавливают звуковые волны, распространяющиеся по грунту. Когда оператор подходит к месту утечки, шум становится сильнее. Определив точку, где звук самый сильный, можно установить местонахождение утечки. Этот метод работает при залегании трубопровода на глубине примерно до 10 м.

Если имеется доступ к трубе через смотровые колодцы, можно прослушивать шум, прикрепив микрофон к трубе или рукоятке вентиля, так как звуковые волны лучше распространяются по материалу трубопровода. Этим способом можно выявить участок трубы между двумя колодцами, на котором есть протечка, а далее, по силе звука, к какому из колодцев она ближе. Точность метода невелика, зато им можно выявить утечку на намного большей глубине, чем при прослушивании с поверхности. Если у прибора имеется функция псевдокорреляции, он может по разности силы звука рассчитывать расстояние до места утечки и уточнять результат поиска.

В комплект прибора обычно входят наушники, мощный усилитель звука (усиление до 5000–12 000 раз), фильтр помех, пропускающий звуки только той частоты, которые заложены в его «память», а также электронный блок, который обрабатывает и записывает результаты и может составлять отчеты. Некоторые приборы совместимы с компьютером.

Считается, что использование течеискателей позволяет сократить расходы на устранение аварий на коммунальных трубопроводах до 40–45%.

Однако у акустических течеискателей есть ряд недостатков. Результаты исследований сильно зависят от наличия шумовых помех, поэтому лучше всего они работают в условиях тишины при исследовании трубопроводов неглубокого заложения – до 1,5 м. Впрочем, современные приборы оснащены микропроцессорами цифровой обработки сигнала и фильтрами, отсеивающими шумовые помехи. Необходимо точно знать маршрут прокладки исследуемого трубопровода, чтобы пройти точно над ним и прослушать шум от утечки в разных точках.

Акустический активный метод – по генератору ударов

В ситуации, когда необходимо отыскать неметаллическую трубу и поэтому нельзя использовать электромагнитный трассоискатель, а к какой-то части трубы имеется доступ, одной из альтернатив является звуковой активный метод. В этом случае применяют генератор звуковых импульсов (ударник), который устанавливается в доступном месте на трубе и методом ударного воздействия создает акустические волны в материале трубы, которые затем улавливаются с поверхности земли акустическим датчиком прибора (микрофоном). Таким образом можно определить местоположение трубопровода. Конечно, этот метод можно использовать и на металлических трубах. Дальность действия прибора зависит от разных факторов, таких как глубина заложения и материал трубы, а также вид грунта. Сила и частота ударов могут регулироваться.

Акустический электрический – по звуку электрического разряда

Если в месте повреждения кабеля можно создать искровой разряд с помощью генератора импульсов, то звук от этого разряда можно прослушивать с поверхности грунта микрофоном. Для возникновения устойчивого искрового разряда необходимо, чтобы величина переходного сопротивления в месте повреждения кабеля превышала 40 Ом. В состав генератора импульсов входят высоковольтный конденсатор и разрядник. Напряжение с заряженного конденсатора через разрядник мгновенно передается на кабель, возникшая электромагнитная волна вызывает пробой в месте повреждения кабеля, и раздается щелчок. Обычно генерируется по одному импульсу через несколько секунд.

Этот метод применяют для локации кабелей всех видов с глубиной залегания до 5 м. Применять этот метод для поиска повреждений у кабелей в металлическом рукаве, проложенных открыто, не рекомендуется, так как звук хорошо распространяется по металлической оболочке и точность локализации места будет невысокой.

Ультразвуковой метод

В основе данного метода лежит регистрация ультразвуковых волн, не слышных человеческому уху. При выходе находящихся под высоким давлением (или наоборот – подсосе при высоком разрежении) жидкости или газа из трубопровода через трещины в сварных швах, неплотности в запорной арматуре и уплотнениях возникает трение между молекулами вытекающего вещества и молекулами среды, в результате генерируются волны ультразвуковой частоты. Благодаря коротковолновой природе ультразвука оператор может точно определять местоположение утечки даже при сильном шумовом фоне, в наземных газопроводах и подземных трубопроводах. Также с помощью ультразвуковых приборов обнаруживают неисправности в электрооборудовании – дуговые и коронные разряды в трансформаторах и распределительных шкафах.

В состав ультразвукового течеискателя входят датчик-микрофон, усилитель, фильтр, преобразователь ультразвука в слышимый звук, который транслируется наушниками. Чем ближе микрофон к месту утечки, тем сильнее звук в наушниках. Чувствительность прибора регулируется. На ЖК-экране результаты сканирования отображаются в цифровом виде. В комплект может входить контактный щуп, с помощью которого также можно прослушивать колебания. Для активного выявления мест негерметичности в состав прибора включают генератор (передатчик) ультразвуковых колебаний, который можно поместить в исследуемый объект (например, емкость или трубопровод), излучаемый им ультразвук будет выходить наружу через неплотности и трещины.

Преимущества. Метод простой, для поиска утечек не требуется сложной процедуры, обучение работе с прибором занимает около 1 часа и при этом метод весьма точный: позволяет обнаруживать утечки через мельчайшие отверстия на расстоянии 10 м и более на фоне сильных посторонних шумов.

Корреляционный метод

В данном случае на трубу по обе стороны от места утечки (например, в двух колодцах или на запорной арматуре на поверхности земли) устанавливают два (или больше) датчиков виброакустических сигналов (пьезодатчиков). От датчиков сигнал передается в прибор по кабелям или по радиоканалу. Поскольку расстояние от датчиков до места утечки разное, звук от утечки будет приходить к ним в разное время. По разнице во времени поступления сигнала на датчики электронный блок-коррелятор рассчитывает функцию кросс-корреляции и место нахождения повреждения между датчиками.

Данный метод применяется на сложных для акустического сканирования зашумленных участках, таких как городские и заводские территории.

Точность расчета зависит от точности измерения времени прохождения сигналов прибором, точности измерения расстояния между датчиками и точности значения скорости распространения звука по трубе. Как утверждают специалисты, при правильном проведении данных измерений надежность, чувствительность и точность корреляционного метода значительно превышают результаты других акустических методов: отклонение не более 0,4 м и вероятность обнаружения утечек составляет 50–90%. Точность результата не зависит от глубины залегания трубопровода. Метод очень устойчив к помехам.

Недостаток корреляционного метода состоит в том, что результаты искажаются при наличии неоднородностей в трубах: засоров, изгибов, ответвлений, деформаций, резких изменений диаметра. Корреляционные течеискатели – дорогостоящие и сложные приборы, работать на которых могут только специально подготовленные специалисты.

Газоискатели

Для выявления утечек газов из трубопроводов используются газоискатели. Микронасос, который входит в состав прибора, закачивает пробу воздуха с проверяемого места. Отобранная проба сравнивается с эталонным воздухом (например, методом нагревания спиралью: при нагревании пробы с газом и воздуха температура спирали будет разная), и прибор фиксирует наличие в пробе газа. Также имеются газоискатели (сравнивающие пробу и эталонный воздух) на основе других принципов. Такое оборудование способно уловить газ или другое опасное летучее вещество даже в том случае, если его в воздухе содержится всего 0,002%!

Газоискатель – легкий и компактный, удобный и простой в эксплуатации прибор. Однако он весьма чувствителен к температуре окружающего воздуха: при слишком высокой или низкой температуре его работоспособность снижается и даже может стать нулевой, например при температуре ниже –15 и выше +45 °С.

Комплексные приборы

Как мы видим, у локаторов каждого типа имеются определенные ограничения и недостатки. Поэтому для служб, эксплуатирующих подземные коммуникации, современные трассопоисковые приборы часто выполняются комплексными, состоящими из аппаратуры разных типов, например, в них вместе с электромагнитным трассоискателем могут входить акустический локатор, георадар и пирометр, а акустический приемник может иметь еще и канал приема электромагнитных сигналов. Поиск может проводиться одновременно на частотах электромагнитных и радиоволн, либо прибор может переключаться в режимы приема магнитных, радио- или акустических волн. Причем модульная конструкция приборов позволяет комплектовать комплексы индивидуально для каждой компании-клиента в зависимости от его конкретных задач. Использование комплексных приборов повышает вероятность точного нахождения местоположения объекта, облегчает и ускоряет проведение работ по обслуживанию подземных коммуникаций.

Инновации в отрасли оборудования для поиска подземных коммуникаций

Запись координат объектов поиска в GPS/ ГЛОНАСС

У некоторых современных трассопоисковых приборов есть возможность определять координаты обнаруженного объекта по GPS/ ГЛОНАСС и записывать их (даже онлайн) в базу данных цифрового плана участка, созданного методом автоматизированного проектирования CAD, обозначив там выявленные инженерные коммуникации. Параллельно данные поступают на компьютер в головной офис компании. Информация может быть представлена в виде простых меток, которые помогут оператору экскаватора визуально ориентироваться на схеме, показанной на дисплее машины. Еще проще будет работать оператору, если управление экскаватором частично автоматизировано и связано с GPS/ ГЛОНАСС – автоматика поможет избежать повреждения коммуникаций.

Новинки трассопоискового оборудования

Ведущие разработчики данного оборудования предлагают сканеры, которые сканируют стройплощадку и на основе анализа характеристик местного грунта и прочих условий на строительном объекте автоматически указывают оптимальную величину частоты, на которой рекомендуется вести локацию подземных коммуникаций. Для достижения наилучшей чувствительности некоторые трассоискатели оснащаются функцией автоматического подбора оптимальной частоты сигнала – это удобно в условиях «грязного» эфира и когда под землей проходит сразу несколько трасс.

Появились приборы с двумя выходами, которые могут теперь подсоединяться и вести исследования одновременно двух инженерных коммуникаций.

Приборы оснащаются высококонтрастным жидкокристаллическим дисплеем, изображение на котором видно даже при освещении прямыми солнечными лучами, информативность дисплеев повышается: в режиме реального времени отображаются все необходимые параметры: глубина коммуникации, направление движения к ней, интенсивность сигнала и т. п. На экране прибора даже может формироваться наглядная схема расположения коммуникаций, трассоискатель способен одновременно «видеть» до трех подземных коммуникаций, «рисуя» на большом дисплее карту их расположения и пересечений.

Георадары (Подробнее о георадарах см. Часть 1)

Работа георадара основана на излучении электромагнитного импульса в грунт и регистрации отраженного сигнала от подземных объектов и границ среды с разными электрофизическими свойствами.

Области применения георадара огромны: он позволяет определять глубину залегания коммуникаций, местоположение пустот и трещин, зоны переувлажнения и уровень грунтовых вод, характер залегания геологических границ, зоны разуплотнения, незаконные врезки, дефекты земляного полотна, наличие арматуры, мин и снарядов, а также другие объекты.

Основное распространение георадиолокация получила в области поиска подземных коммуникаций, во многом благодаря тому, что этот метод обнаруживает коммуникации из любого материала, в том числе неметаллические.

Для поиска подземных коммуникаций подбирают георадар с антеннами, имеющими среднюю центральную частоту (200–700 МГц). Поиск на таких частотах обеспечивает глубину зондирования до 5 м, а также позволяет находить кабели и трубы малого диаметра.

При необходимости обследования больших территорий используются георадарные системы с массивом антенн, устанавливаемые на транспортное средство. Такие системы сканируют до нескольких гектаров в день.

Современные георадары могут находить подземные коммуникации в режиме реального времени и имеют возможность совместного использования с GPS-оборудованием, что позволяет привязываться к местности и, используя полученные координаты, переносить георадарные данные в CAD-системы, а также наносить обнаруженные коммуникации на имеющиеся схемы.

Долгое время считалось, что георадар – это сложная в понимании и управлении техника, однако с появлением современных технологий и продвинутого программного обеспечения ситуация в корне изменилась. Георадары лидирующих производителей имеют максимальную автоматизацию получения и интерпретации данных, что исключает ошибки, связанные с человеческим фактором. Таким образом, на сегодняшний день георадар является незаменимым помощником в поиске подземных коммуникаций и по праву может считаться «третьим глазом» инженера-изыскателя.

Предлагаю очень простой и в тоже время практичный прибор, для поиска обрыва в кабелях и проводах. Небольшие габариты позволяют таскать его в сумке с инструментом, где он не занимает много места.

Данный прибор давно и успешно применяется для поиска обрывов в телефонных многожильных кабелях, автопроводке, а в последнее время и для поиска скрытой проводки.

Схема содержит всего одну микросхему и обвес к ней.


Все устройство поиска обрыва в кабелях собирается в любом подходящем корпусе - как готовом, так и самодельном. В моем первом варианте это был пенал для чертежных принадлежностей,


А теперь, склеенный из пласмасы с помощью дихлорэтана небольшого размера коробке. Схема спаянная навесным монтажом (в первом варианте это была плата выдранная из нерабочего плеера) и всаженная термоусадкой.


За 9 лет работы ни каких проблем с прибором для поиска обрыва кабелей не было, разве что замена шнуров да элементов питания.


Так как ток потреблния определяется в основном звукоизлучателем - при использовании наушников батареек хватит очень надолго.


Щуп изготовлен из велосипедной спицы (еще в разработке магнитный). Хотя пойдет любой экранированый провод, но я делаю свой (так надежней и долговечней).


Центральная жила - МГТФ. Оплетка сдернута со старого магнитофона. И все это затянуто в ПВХ трубку.


Также нужна будет термоусадка разных диаметров и конечно немного познаний в электронике. С уважением, UR5RNP.

Часто перед проведением каких-нибудь земляных работ или даже с целью обслуживания проложенного под землей кабеля, необходимо этот самый кабель найти. Согласитесь, будет весьма досадным - повредить проложенный под землей кабель, например зацепив его ковшом экскаватора или случайно пробурив.

Чтобы подобных казусов избежать, необходимо предварительно получить достоверную информацию о месте пролегания кабеля под землей, это же касается и подземных коммуникационных трубопроводов.

Если информация о месте проложенного под землей кабеля не будет достоверной или окажется недостаточно точной, то неминуемы лишние затраты и ошибки, а ошибки такие иногда чреваты плачевными последствиями для здоровья и даже для жизни людей.

Состояние подземных кабелей позволяют оценить трассоискатели, но иногда требуется локализовать кабель под землей, чтобы дальше провести его внимательный осмотр и принять решение о целесообразности тех или иных дальнейших действий. Именно о способах локализации кабелей под землей и пойдет речь в данной статье.

Как вы уже поняли, поиск подземного кабеля — дело ответственное, и требует большой внимательности и аккуратности. Давайте же рассмотрим способы поиска кабеля под землей.

Найдите документацию

В принципе любой объект, на территории которого имеются подземные кабели, имеет соответствующую документацию. Чертежи и схемы вы можете запросить в администрации города или у коммунальной службы, в ведомстве которой находится данный объект.

На этих чертежах должна быть представлена вся информация о подземных коммуникациях на территории объекта: подземные кабели, трубы, каналы и т. д. Эта документация станет для вас источником исходных данных, от которых можно будет оттолкнуться, чтобы знать где искать. Данные могут оказаться неточными, и тогда следующие шаги оператора позволят уточнить место положения кабеля под землей.

Прозондировать грунт на наличие закопанного кабеля, как один из вариантов, поможет георадар.

Георадары — это радиолокаторы, с помощью которых можно исследовать стены зданий, воду, землю, но не воздух. Данные геофизические приборы являются электронными устройствами, функционирование которых можно описать следующим образом.

Передающая антенна излучает радиочастотные импульсы в исследуемую среду, затем отраженный сигнал поступает на приемную антенну и обрабатывается. Процессы синхронизированы так, что система позволяет например на экране ноутбука увидеть место, где проходит подземный кабель.

Использование георадара, работающего на принципе излучения и приема электромагнитных волн, позволяет точно выявить глубину залегания и размер подземного объекта. С помощью георадара легко найти пластиковые трубы и оптоволоконные кабели под землей. Но отличить пластиковую трубу с водой от уплотнения в грунте сможет лишь профессионал. Тем не менее, приблизительно выявить расположение подземных коммуникаций в разного рода грунтах можно. Документация поможет оператору сориентироваться и понять, что он обнаружил — трубу с водой или трубу с кабелем.

Отрицательными факторами при работе с георадаром будут: высокий уровень грунтовых вод, глинистый грунт, наносы, - в силу их высокой проводимости, и, как следствие, возможности прибора будут ниже. Разнородные осадочные породы и скальный грунт способствуют рассеиванию сигнала.

Для правильной интерпретации полученной информации важно обладать достаточным опытом в данной сфере, и лучше всего, если оператором будет квалифицированный профессионал. Сам прибор довольно дорогой, и качество его использования, как вы уже догадались, сильно зависит от условий исследуемой среды.


В некоторых случаях температура проложенного под землей силового кабеля может сильно отличаться от температуры окружающего кабель грунта. И иногда разности температур может оказаться достаточно для точной локализации кабеля. Но опять же, внешние условия сильно влияют, и например ветер или солнечный свет значительно скажутся на результате анализа.

Наиболее верный способ поиска кабеля под землей — использовать метод электромагнитной локации. Это наиболее популярный и поистине универсальный способ поиска любых проводящих коммуникаций под землей, в том числе и кабелей. По количеству получаемой информации, данный метод, пожалуй, лучший.

Обнаруживается граница зоны залегания кабеля. Идентифицируется проводящий материал подземного объекта. Измеряется глубина залегания кабеля путем оценки электромагнитного поля от центра подземного кабеля. Может работать с любым типом грунта с одинаковой эффективностью. Трассоискатель имеет небольшой вес и не требует при обращении с собой специальных навыков от оператора.

Электромагнитный трассоискатель кабельных линий использует в процессе своей работы всем известный принцип электромагнитной индукции: любой металлический проводник с током образует вокруг себя электромагнитное поле. В случае силового кабеля - это ток рабочего напряжения линии, для стального трубопровода - вихревой ток наводки. Именно эти токи и улавливаются прибором.

Андрей Повный



Загрузка...
Top