Смотреть страницы где упоминается термин интенсивность отказов. Интенсивность отказов - зависимость интенсивности отказов от времени (кривая жизни изделия) Интенсивность отказов работы элемента справочник

Аннотация: Рассматриваются два вида средств поддержания высокой доступности: обеспечение отказоустойчивости (нейтрализация отказов, живучесть) и обеспечение безопасного и быстрого восстановления после отказов (обслуживаемость).

Доступность

Основные понятия

Информационная система предоставляет своим пользователям определенный набор услуг (сервисов). Говорят, что обеспечен нужный уровень доступности этих сервисов, если следующие показатели находятся в заданных пределах:

  • Эффективность услуг . Эффективность услуги определяется в терминах максимального времени обслуживания запроса, количества поддерживаемых пользователей и т.п. Требуется, чтобы эффективность не опускалась ниже заранее установленного порога.
  • Время недоступности . Если эффективность информационной услуги не удовлетворяет наложенным ограничениям, услуга считается недоступной. Требуется, чтобы максимальная продолжительность периода недоступности и суммарное время недоступности за некоторый период (месяц, год) не превышали заранее заданных пределов.

В сущности, требуется, чтобы информационная система почти всегда работала с нужной эффективностью. Для некоторых критически важных систем (например, систем управления) время недоступности должно быть нулевым, без всяких "почти". В таком случае говорят о вероятности возникновения ситуации недоступности и требуют, чтобы эта вероятность не превышала заданной величины. Для решения данной задачи создавались и создаются специальные отказоустойчивые системы , стоимость которых, как правило, весьма высока.

К подавляющему большинству коммерческих систем предъявляются менее жесткие требования, однако современная деловая жизнь и здесь накладывает достаточно суровые ограничения, когда число обслуживаемых пользователей может измеряться тысячами, время ответа не должно превышать нескольких секунд, а время недоступности – нескольких часов в год.

Задачу обеспечения высокой доступности необходимо решать для современных конфигураций, построенных в технологии клиент/сервер. Это означает, что в защите нуждается вся цепочка – от пользователей (возможно, удаленных) до критически важных серверов (в том числе серверов безопасности).

Основные угрозы доступности были рассмотрены нами ранее.

В соответствии с ГОСТ 27.002, под отказом понимается событие, которое заключается в нарушении работоспособности изделия. В контексте данной работы изделие – это информационная система или ее компонент.

В простейшем случае можно считать, что отказы любого компонента составного изделия ведут к общему отказу , а распределение отказов во времени представляет собой простой пуассоновский поток событий. В таком случае вводят понятие интенсивности отказов и , которые связаны между собой соотношением

где – номер компонента,

интенсивность отказов ,

– .

Интенсивности отказов независимых компонентов складываются:

а среднее время наработки на отказ для составного изделия задается соотношением

Уже эти простейшие выкладки показывают, что если существует компонент, интенсивность отказов которого много больше, чем у остальных, то именно он определяет среднее время наработки на отказ всей информационной системы. Это является теоретическим обоснованием принципа первоочередного укрепления самого слабого звена .

Пуассоновская модель позволяет обосновать еще одно очень важное положение, состоящее в том, что эмпирический подход к построению систем высокой доступности не может быть реализован за приемлемое время. При традиционном цикле тестирования/отладки программной системы по оптимистическим оценкам каждое исправление ошибки приводит к экспоненциальному убыванию (примерно на половину десятичного порядка) интенсивности отказов . Отсюда следует, что для того, чтобы на опыте убедиться в достижении необходимого уровня доступности, независимо от применяемой технологии тестирования и отладки, придется потратить время, практически равное среднему времени наработки на отказ . Например, для достижения среднего времени наработки на отказ 10 5 часов потребуется более 10 4,5 часов, что составляет более трех лет. Значит, нужны иные методы построения систем высокой доступности , методы, эффективность которых доказана аналитически или практически за более чем пятьдесят лет развития вычислительной техники и программирования.

Пуассоновская модель применима в тех случаях, когда информационная система содержит одиночные точки отказа , то есть компоненты, выход которых из строя ведет к отказу всей системы. Для исследования систем с резервированием применяется иной формализм .

В соответствии с постановкой задачи будем считать, что существует количественная мера эффективности предоставляемых изделием информационных услуг. В таком случае вводятся понятия показателей эффективности отдельных элементов и эффективности функционирования всей сложной системы.

В качестве меры доступности можно принять вероятность приемлемости эффективности услуг, предоставляемых информационной системой, на всем протяжении рассматриваемого отрезка времени. Чем большим запасом эффективности располагает система, тем выше ее доступность.

При наличии избыточности в конфигурации системы вероятность того, что в рассматриваемый промежуток времени эффективность информационных сервисов не опустится ниже допустимого предела, зависит не только от вероятности отказа компонентов, но и от времени, в течение которого они остаются неработоспособными, поскольку при этом суммарная эффективность падает, и каждый следующий отказ может стать фатальным. Чтобы максимально увеличить доступность системы, необходимо минимизировать время неработоспособности каждого компонента. Кроме того, следует учитывать, что, вообще говоря, ремонтные работы могут потребовать понижения эффективности или даже временного отключения работоспособных компонентов; такого рода влияние также необходимо минимизировать.

Несколько терминологических замечаний. Обычно в литературе по теории надежности вместо доступности говорят о готовности (в том числе о высокой готовности ). Мы предпочли термин "доступность", чтобы подчеркнуть, что информационный сервис должен быть не просто "готов" сам по себе, но доступен для своих пользователей в условиях, когда ситуации недоступности могут вызываться причинами, на первый взгляд не имеющими прямого отношения к сервису (пример – отсутствие консультационного обслуживания).

Далее, вместо времени недоступности обычно говорят о коэффициенте готовности . Нам хотелось обратить внимание на два показателя – длительность однократного простоя и суммарную продолжительность простоев, поэтому мы предпочли термин " время недоступности " как более емкий.

Основы мер обеспечения высокой доступности

Основой мер повышения доступности является применение структурированного подхода, нашедшего воплощение в объектно-ориентированной методологии. Структуризация необходима по отношению ко всем аспектам и составным частям информационной системы – от архитектуры до административных баз данных, на всех этапах ее жизненного цикла – от инициации до выведения из эксплуатации. Структуризация , важная сама по себе, является одновременно необходимым условием практической реализуемости прочих мер повышения доступности. Только маленькие системы можно строить и эксплуатировать как угодно. У больших систем свои законы, которые, как мы уже указывали, программисты впервые осознали более 30 лет назад.

При разработке мер обеспечения высокой доступности

Часть 1.

Введение
Развитие современной аппаратуры характеризуется значительным увеличением ее сложности. Усложнение обуславливает повышение гарантии своевременности и правильности решения задач.
Проблема надежности возникла в 50-х годах, когда начался процесс быстрого усложнения систем, и стали вводиться в действие новые объекты. В это время появились первые публикации, определяющие понятия и определения, относящиеся к надежности [ 1 ] и была создана методика оценки и расчета надежности устройств вероятностно-статистическими методами.
Исследование поведения аппаратуры (объекта) во время эксплуатации и оценка ее качества определяет его надежность. Термин "эксплуатация" происходит от французского слова "exploitation", что означает получение пользы или выгоды из чего-либо.
Надежность - свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах.
Для количественного выражения надежности объекта и для планирования эксплуатации используются специальные характеристики - показатели надежности. Они позволяют оценивать надежность объекта или его элементов в различных условиях и на разных этапах эксплуатации.
Более подробно с показателями надежности можно ознакомиться в ГОСТ 16503-70 - "Промышленные изделия. Номенклатура и характеристика основных показателей надежности.", ГОСТ 18322-73 - "Системы технического обслуживания и ремонта техники. Термины и определения.", ГОСТ 13377-75 - "Надежность в технике. Термины и определения".

Определения
Надежность - свойство [далее - (сво-во)] объекта [далее - (ОБ)] выполнять требуемые функции, сохраняя свои эксплуатационные показатели в течение заданного периода времени.
Надежность представляет собой комплексное сво-во, сочетающее в себе понятие работоспособности, безотказности, долговечности, ремонтопригодности и сохранности.
Работоспособность - представляет собой состояние ОБ, при котором он способен выполнять свои функции.
Безотказность - сво-во ОБ сохранять свою работоспособность в течение определенного времени. Событие, нарушающее работоспособность ОБ, называется отказом. Самоустраняющийся отказ называется сбоем.
Долговечность - сво-во ОБ сохранять свою работоспособность до предельного состояния, когда его эксплуатация становится невозможной по техническим, экономическим причинам, условиям техники безопасности или необходимости капитального ремонта.
Ремонтопригодность - определяет приспособляемость ОБ к предупреждению и обнаружению неисправностей и отказов и устранению их путем проведения ремонтов и технического обслуживания.
Сохраняемость - сво-во ОБ непрерывно поддерживать свою работоспособность в течение и после хранения и технического обслуживания.

Основные показатели надежности
Основными качественными показателями надежности является вероятность безотказной работы, интенсивность отказов и средняя наработка до отказа.
Вероятность безотказной работы P(t) представляет собой вероятность того, что в пределах указанного периода времени t , отказ ОБ не возникнет. Этот показатель определяется отношение числа элементов ОБ, безотказно проработавших до момента времени t к общему числу элементов ОБ, работоспособных в начальный момент.
Интенсивность отказов l (t) - это число отказов n(t) элементов ОБ в единицу времени, отнесенное к среднему числу элементов Nt ОБ, работоспособных к моменту времени D t :
l (t )= n (t )/(Nt * D t ) , где
D t - заданный отрезок времени.
Например : 1000 элементов ОБ работали 500 часов. За это время отказали 2 элемента. Отсюда, l (t )= n (t )/(Nt * D t )=2/(1000*500)=4*10 -6 1/ч, т.е. за 1 час может отказать 4-е элемента из миллиона.
Показатели интенсивности отказов комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в приведена интенсивность отказов l (t) некоторых элементов.

Наименование элемента

Интенсивность отказов, *10 -5, 1/ч

Резисторы

Конденсаторы

Трансформаторы

Катушки индуктивности

Коммутационные устройства

Соединения пайкой

Провода, кабели

Электродвигатели


Надежность ОБ, как системы, характеризуется потоком отказов L , численно равное сумме интенсивности отказов отдельных устройств:
L = ål i
По формуле рассчитывается поток отказов и отдельных устройств ОБ, состоящих, в свою очередь, из различных узлов и элементов, характеризующихся своей интенсивностью отказов. Формула справедлива для расчета потока отказов системы из n элементов в случае, когда отказ любого из них приводит к отказу всей системы в целом. Такое соединение элементов называется логически последовательным или основным. Кроме, того, существует логически параллельное соединение элементов, когда выход их строя одного из них не приводит к отказу системы в целом. Связь вероятности безотказной работы P(t) и потока отказов L определяется:
P (t )= exp (- D t ) , очевидно, что 0И 0< P (t )<1 и p (0)=1, а p (¥ )=0
Средняя наработка до отказа To - это математическое ожидание наработки ОБ до первого отказа:
To=1/ L =1/(ål i) , или , отсюда : L =1/To
Время безотказной работы равно обратной величине интенсивности отказов.
Например : технология элементов обеспечивает среднюю интенсивность отказов l i =1*10 -5 1/ч . При использовании в ОБ N=1*10 4 элементарных деталей суммарная интенсивность отказов l о= N * l i =10 -1 1/ч . Тогда среднее время безотказной работы ОБ To =1/ l о=10 ч. Если выполнить ОБ на основе 4-х больших интегральных схем (БИС), то среднее время безотказной работы ОБ увеличится в N/4=2500 раз и составит 25000 ч. или 34 месяца или около 3 лет.

Расчет надежности
Формулы позволяют выполнить расчет надежности ОБ, если известны исходные данные - состав ОБ, режим и условия его работы, интенсивности отказов его компонент (элементов). Однако при практических расчетах надежности есть трудности из-за отсутствия достоверных данных о интенсивности отказов для номенклатуры элементов, узлов и устройств ОБ. Выход из этого положения дает применение коэффициентного метода. Cущность коэффициентного метода состоит в том, что при расчете надежности ОБ используют не абсолютные значения интенсивности отказов l i , а коэффициент надежности ki , связывающий значения l i с интенсивностью отказов l b какого-либо базового элемента:
ki = l i / l b
Коэффициент надежности ki практически не зависит от условий эксплуатации и для данного элемента является константой, а различие условий эксплуатации ku учитывается соответствующими изменениями l b . В качестве базового элемента в теории и практике выбран резистор. Показатели надежности комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в приведен коэффициенты надежности ki некоторых элементов. В табл. 3 приведены коэффициенты условий эксплуатации ku работы для некоторых типов аппаратуры.
Влияние на надежность элементов основных дестабилизирующих факторов - электрических нагрузок, температуры окружающей среды - учитывается введением в расчет поправочных коэффициентов a . В табл. 4 приведены коэффициенты условий a работы для некоторых типов элементов. Учет влияния других факторов - запыленности, влажности и т.д. - выполняется коррекцией интенсивности отказов базового элемента с помощью поправочных коэффициентов.
Результирующий коэффициент надежности элементов ОБ с учетом поправочных коэффициентов:
ki"=a1*a2*a3*a4*ki*ku, где
ku - номинальное значение коэффициента условий эксплуатации
ki - номинальное значение коэффициент надежности
a1 - коэффициент учитывающий влияние электрической нагрузки по U, I или P
a2 - коэффициент учитывающий влияние температуры среды
a3 - коэффициент снижения нагрузки от номинальной по U, I или P
a4 - коэффициент использования данного элемента, к работе ОБ в целом

Условия эксплуатации

Коэффициент условий

Лабораторные условия

Аппаратура стационарная:

В помещениях

Вне помещений

Подвижная аппаратура:

Корабельная

Автомобильная

Поездная

Наименование элемента и его параметры

Коэффициент нагрузки

Резисторы:

По напряжению

По мощности

Конденсаторы

По напряжению

По реактивной мощности

По прямому току

По обратному напряжению

По температуре перехода

По току коллектора

По напряж. коллектор-эмиттер

По рассеиваемой мощности

Порядок расчета состоит в следующем:
1. Определяют количественные значения параметров, характеризующие нормальную работу ОБ.
2. Составляют поэлементную принципиальную схему ОБ, определяющую соединение элементов при выполнении ими заданной функции. Вспомогательные элементы, использующиеся при выполнении функции ОБ, не учитываются.
3. Определяются исходные данные для расчета надежности:

  • тип, количество, номинальные данные элементов
  • режим работы, температура среды и другие параметры
  • коэффициент использования элементов
  • коэффициент условий эксплуатации системы
  • определяется базовый элемент l b и интенсивность отказов l b "
  • по формуле: ki "= a 1* a 2* a 3* a 4* ki * ku определяется коэффициент надежности

4. Определяются основные показатели надежности ОБ, при логически последовательном (основном) соединении элементов, узлов и устройств:

  • вероятность безотказной работы : P(t)=exp{- l b*To*} , где
    Ni - число одинаковых элементов в ОБ
    n - общее число элементов в ОБ, имеющих основное соединение
  • наработка на отказ :
    To=1/{ l b*}

Если в схеме ОБ есть участки с параллельным соединением элементов, то сначала делается расчет показателей надежности отдельно для этих элементов, а затем для ОБ в целом.
5. Найденные показатели надежности сравниваются с требуемыми. Если не соответствуют, то принимаются меры к повышению надежности ОБ ().
6. Средствами повышения надежности ОБ являются:
- введение избыточности, которая бывает:

  • внутриэлементная - применение более надежных элементов
  • структурная - резервирование - общее или раздельное

Пример расчета:
Рассчитаем основные показатели надежности для вентилятора на асинхронном электродвигателе. Схема приведена на . Для пуска М замыкают QF, а затем SB1. KM1 получает питание, срабатывает и своими контактами КМ2 подключает М к источнику питания, а вспомогательным контактом шунтирует SB1. Для отключения М служит SB2.

В защите М используются FA и тепловое реле KK1 с КК2. Вентилятор работает в закрытом помещении при T=50 C в длительном режиме. Для расчета применим коэффициентный метод, используя коэффициенты надежности компонент схемы. Принимаем интенсивность отказов базового элемента l b =3*10 -8 . На основании принципиальной схемы и ее анализа, составим основную схему для расчета надежности (). В расчетную схему включены компоненты, отказ которых приводит к полному отказу устройства. Исходные данные сведем в .

Базовый элемент, 1/ч

l б

3*10 -8

Коэф. условий эксплуатации

Интенсивность отказов

l б ’

l б* ku =7,5*10 -8

Время работы, ч

Элемент принципиальной схемы

Элемент расчетной схемы

Число элементов

Коэф. надежности

Коэф. нагрузки

Коэф. электрической нагрузки

Коэф. температуры

Коэф. нагрузки по мощности

Коэф. использования

Произведение коэф. a

Коэф. надежности

S (Ni * ki ’)

Наработка до отказа, ч

1/[ l б ’* S (Ni*ki’)]=3523,7

Вероятность

е [- l б ’*To* S (Ni*ki’)] =0,24

По результатам расчета можно сделать выводы:
1. Наработка до отказа устройства: To=3524 ч.
2. Вероятность безотказной работы: p(t)=0,24. Вероятность того, что в пределах заданного времени работы t в заданных условиях работы не возникнет отказа.

Частные случай расчета надежности.

1. Объект (далее ОБ) состоит из n блоков, соединенных последовательно (). Вероятность безотказной работы каждого блока p. Найти вероятность безотказной работы P системы в целом.

Решение: P = p n
2. ОБ состоит из n блоков, соединенных параллельно (). Вероятность безотказной работы каждого блока p. Найти вероятность безотказной работы P системы в целом.

Решение: P =1-(1- p ) 2
3. ОБ состоит из n блоков, соединенных параллельно (). Вероятность безотказной работы каждого блока p. Вероятность безотказной работы переключателя (П) p1. Найти вероятность безотказной работы P системы в целом.

Решение: P=1-(1-p)*(1-p1*p)
4. ОБ состоит из n блоков (), с вероятность безотказной работы каждого блока p. С целью повышения надежности ОБ произведено дублирование, еще такими-же блоками. Найти вероятность безотказной работы системы: с дублированием каждого блока Pa, с дублированием всей системы Pb.

Решение: Pa = n Pb = 2
5. ОБ состоит из n блоков (см. рис. 10). При исправном C вероятность безотказной работы U1=p1, U2=p2. При неисправном C вероятность безотказной работы U1=p1", U2=p2". Вероятность безотказной работы C=ps. Найти вероятность безотказной работы P системы в целом.

Решение: P = ps *+(1- ps )*
9. ОБ состоит из 2-х узлов U1 и U2. Вероятность безотказной работы за время t узлов: U1 p1=0.8, U2 p2=0.9. По истечении времени t ОБ несправен. Найти вероятность, что:
- H1 - неисправен узел U1
- H2 - неисправен узел U2
- H3 - неисправны узлы U1 и U2
Решение: Очевидно, имело место H0, когда оба узла исправны.
Событие A=H1+H2+H3
Априорные (первоначальные) вероятности:
- P(H1)=(1-p1)*p2 =(1-0.8)*0.9=0.2*0.9=0.18
- P(H2)=(1-p2)*p1 =(1-0.9)*0.8=0.1*0.8=0.08
- P(H3)=(1-p1)*(1-p2) =(1-0.8)*0.9=0.2*0.1=0.02
- A= i=1 å 3 *P(Hi)=P(H1)+P(H2)+P(H3) =0.18+0.08+0.02=0.28
Апостерионые (конечные) вероятности:
- P(H1/A)=P(H1)/A=0.18/0.28=0.643
- P(H2/A)=P(H2)/A=0.08/0.28=0.286
- P(H3/A)=P(H3)/A=0.02/0.28=0.071
10. ОБ состоит из m блоков типа U1 и n блоков типа U2. Вероятность безотказной работы за время t каждого блока U1=p1, каждого блока U2=p2. Для работы ОБ достаточно, чтобы в течение t работали безотказно любые 2-а блока типа U1 и одновременно с этим любые 2-а блока типа U2. Найти вероятность безотказной работы ОБ.
Решение: Событие A (безотказная работа ОБ) есть произведение 2-х событий:
- A1 - (не менее 2-х из m блоков типа U1 работают)
- A2 - (не менее 2-х из n блоков типа U2 работают)
Число X1 работающих безотказно блоков типа U1 есть случайная величина, распределенная по биномиальному закону с параметрами m, p1. Событие A1 состоит в том, что X1 примет значение не менее 2, поэтому:

P(A1 )=P{X1>2}=1-P(X1<2)=1-P(X1=0)-P(X1=1)=1-(g1 m +m*g2 m-1 *p1) , где g1=1-p1

аналогично: P(A2)=1-(g2 n +n*g2 n-1 *p2) , где g2=1-p2

Вероятность безотказной работы ОБ:

R =P(A)=P(A1)*P(A2)=* , где g1=1-p1, g2=1-p2

11. ОБ состоит из 3-х узлов (). В узле U1 n1 элементов с интенсивностью отказов l1. В узле U2 n2 элементов с интенсивностью отказов l2. В узле U3 n3 элементов с интенсивностью отказов l2, т.к. U2 и U3 дублируют друг друга. U1 выходит из строя если в нем отказало не менее 2-х элементов. U2 или U3, т.к. дублируются, выходят из строя если в них отказал хотя бы один элемент. ОБ выходит из строя если отказал U1 или U2 и U3 вместе. Вероятность безотказной работы каждого элемента p. Найти вероятность того, что за время t ОБ не выйдет из строя.
Вероятности выхода из строя U 2 и U 3 равны:

R2=1-(1-p2) n2 R3=1-(1-p3) n3

Вероятности выхода из строя всего ОБ:
R=R1+(1-R1)*R2*R3

Литература:

  • Малинский В.Д. и др. Испытания радиоаппаратуры, "Энергия", 1965 г.
  • ГОСТ 16503-70 - "Промышленные изделия. Номенклатура и характеристика основных показателей надежности".
  • Широков А.М. Надежность радиоэлектронных устройств, М, Высшая школа, 1972 г.
  • ГОСТ 18322-73 - "Системы технического обслуживания и ремонта техники. Термины и определения".
  • ГОСТ 13377-75 - "Надежность в технике. Термины и определения".
  • Козлов Б.А., Ушаков И.А. Справочник по расчету надежности аппаратуры радиоэлектроники и автоматики, М, Сов. Радио, 1975 г.
  • Перроте А.И., Сторчак М.А. Вопросы надежности РЭА, М, Сов. Радио, 1976 г.
  • Левин Б.Р. Теория надежности радиотехнических систем, М, Сов. Радио, 1978 г.
  • ГОСТ 16593-79 - "Электроприводы. Термины и определения".

И. Брагин 08.2003 г.

Различают три вида отказов:

· обусловленные скрытыми ошибками в конструкторско-технологической документации и производственными дефектами при изготовлении изделий;

· обусловленные старением и износом радио- и конструкционных элементов;

· обусловленные случайными факторами различной природы.

Для оценки надежности систем введены понятия «работоспособность» и «отказ».

Работоспособность и отказы. Работоспособность - это состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями технической документации. Отказ – событие, приводящее к полной или частичной утрате работоспособности изделия. По характеру изменения параметров аппаратуры отказы подразделяют на внезапные и по­степенные.

Внезапные (катастрофические) отказы характеризуются скачкообразным изменением одного или нескольких параметров аппаратуры и возникают в результате внезапного изменения одного или нескольких параметров элементов, из которых построена РЭА (обрыв или короткое замыкание). Устранение внезапного отказа производят заменой отказавшего элемента исправным или его ремонтом.

Постепенные (параметрические) отказы характеризуются изменением одного или нескольких параметров аппаратуры с течением времени. Они возникают в результате постепенного изменения параметров элементов до тех пор, пока значение одного из параметров не выйдет за некоторые пределы, определяющие нормальную работу элементов. Это может быть последствием старения элементов, воздействия колебаний температуры, влажности, давления, механических воздействий, и т.п. Устранение постепенного отказа связано либо с заменой, ремонтом, регулировкой параметров отказавшего элемента, либо с компенсацией за счет изменения параметров других элементов.

По взаимосвязи между собой различают отказы независимые, не свя­занные с другими отказами, и зависимые. По повторяемости возникновения отказы бывают одноразовые (сбои) и перемежающиеся. Сбой - однократно возникающий самоустраняющийся отказ, перемежающийся - многократно возникающий сбой одного и того же характера.

По наличию внешних признаков различают отказы явные - имею­щие внешние признаки появления, и неявные (скрытые), для обна­ружения которых требуется провести определенные действия.

По причине возникновения отказы подразделяют на конструкцион­ные, производственные и эксплуатационные, вызванные нарушением уста­новленных норм и правил при конструировании, производстве и эксплуата­ции РЭА.

По характеру устранения отказы делятся на устойчивые и самоустра­няющиеся. Устойчивый отказ устраняется заменой отказавшего элемента (модуля), а самоустраняющийся исчезает сам, но может повториться. Само­устраняющийся отказ может проявиться в виде сбоя или в форме переме­жающегося отказа. Отказ типа сбоя особенно характерен для РЭА. Появление сбоев обусловливается внешними и внутренними факторами.

К внешним факторам относятся колебания напряжения питания, вибрации, температурные колебания. Специальными мерами (стабилизации питания, амортизация, термостатирование и др.) влияние этих факторов может быть значительно ослаблено. К внутренним факторам относятся флуктуационные колебания параметров элементов, несинхронность работы отдельных устройств, внутренние шумы и наводки.

7.2. количественные характеристики Надежности

Надежность, как сочетание свойств безотказности, ремонтоспособности, долговечности и сохраняемости, и сами эти качества количественно характеризуются различными функциями и числовыми параметрами. Правильный выбор количественных показателей надежности РЭА позволяет объективно сравнивать технические характеристики различных изделий как на этапе проектирования, так и на этапе эксплуатации (правильный выбор системы элементов, технические обоснования работы по эксплуатации и ремонту РЭА, объем необходимого запасного имущества и др.).

Возникновение отказов носит случайный харак­тер. Процесс возникновения отказов в РЭА описывается сложными вероятностными законами. В инженерной практике для оценки надежности РЭА вводят количественные характеристики, основанные на обработке экспериментальных данных.

Безотказность изделий характеризуется

Вероятностью безотказной работы P(t) (характеризует скорость снижения надежности во времени),

Частотой отказов F(t),

Интенсивностью отказов l(t),

Средней наработкой на отказ Т ср.

Можно также надежность РЭА оценивать вероятностью отказа q(t) = 1 - P(t).

Рассмотрим оценку надежности неремонтируемых систем. Приведенные характеристики верны и для ремонтируемых систем, если их рассматривать для случая до первого отказа.

Пусть на испытания поставлена партия, содержащая N(0) изделий. В процессе испытаний к моменту времени t вышли из строя n изделий. Осталось исправными:

N(t) = N(0) – n.

Отношение Q(t) = n/N(0) является оценкой вероятности выхода из строя изделия за время t. Чем больше число изделий, тем точнее оценка надежности результатов, строгое выражение для которой выглядит следующим образом:

Величина P(t), равная

P(t) = 1 – Q(t)

называется теоретической вероятностью безотказной работы и характеризует вероятность того, что к моменту t не произойдет отказа.

Вероятность безотказной работы P(t) представляет собой вероятность того, что в пределах указанного периода времени t, отказ объекта не возникнет. Этот показатель определяется отношение числа элементов объекта, безотказно проработавших до момента времени t к общему числу элементов объекта, работоспособных в начальный момент.

Вероятность безотказной работы изделия может быть определена и для произвольного интервала времени (t 1 ; t 2) с момента начала эксплуатации. В этом случае говорят об условной вероятности P(t 1 ; t 2) в период (t 1 ; t 2) при рабочем состоянии в момент времени t 1 . Условная вероятность P(t 1 ; t 2) определяется отношением:

P(t 1 ; t 2) = P(t 2)/ P(t 1),

где P(t 1) и P(t 2) - соответственно значения вероятностей в начале (t 1) и конце (t 2) наработки.

Частота отказов. Значение частоты отказов за время t в данном опыте определяется отношением f(t) = Q(t)/t = n/(N(0)*t). В качестве показателя надежности неремонтируемых систем чаще используют производную по времени от функции отказа Q(t), которая характеризует плотность распределения наработки изделия до отказа f(t):

f(t) = dQ(t)/dt = - dP(t)/dt.

Величина f(t)dt характеризует вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в рабочем состоянии.

Интенсивность отказов. Критерием, более полно определяющим надежность неремонтируемой РЭА и ее модулей, является интенсивность отказов l(t). Интенсивность отказов l(t) представляет условную вероятность возникновения отказа в системе в некоторый момент времени наработки при условии, что до этого момента отказов в системе не было. Величина l(t) определяется отношением

l (t) = f(t)/P(t) = (1/P(t)) dQ/dt.

Интенсивность отказов l (t) - это число отказов n(t) элементов объекта в единицу времени, отнесенное к среднему числу элементов N(t) объекта, работоспособных к моменту времени t:

l (t)=n(t)/(N(t)*t), где

t - заданный отрезок времени.

Например: 1000 элементов объекта работали 500 часов. За это время отказали 2 элемента. Отсюда, l(t)=n(t)/(N*t)=2/(1000*500)=4*10-6 1/ч, т.е. за 1 час может отказать 4-е элемента из миллиона.

Надежность объекта, как системы, характеризуется потоком отказов l, численно равное сумме интенсивности отказов отдельных устройств:

По формуле рассчитывается поток отказов и отдельных устройств объекта, состоящих, в свою очередь, из различных узлов и элементов, характеризующихся своей интенсивностью отказов. Формула справедлива для расчета потока отказов системы из n элементов в случае, когда отказ любого из них приводит к отказу всей системы в целом. Такое соединение элементов называется логически последовательным или основным. Кроме, того, существует логически параллельное соединение элементов, когда выход их строя одного из них не приводит к отказу системы в целом. Связь вероятности безотказной работы P(t) и потока отказов l определяется:

P(t)=exp(-lt), очевидно, что 0

Показатели интенсивности отказов комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в табл. 1 приведена интенсивность отказов l(t) некоторых элементов.

Наименование элемента Интенсивность отказов, *10 -5, 1/ч
Резисторы 0,0001…1,5
Конденсаторы 0,001…16,4
Трансформаторы 0,002…6,4
Катушки индуктивности 0,002…4,4
Реле 0,05…101
Диоды 0,012…50
Триоды 0,01…90
Коммутационные устройства 0,0003…2,8
Разъемы 0,001…9,1
Соединения пайкой 0,01…1
Провода, кабели 0,01…1
Электродвигатели 100…600

Отсюда следует, что величина l(t)dt характеризует условную вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в работоспособном состоянии. Этот показатель характеризует на­дежность РЭА в любой момент времени и для интервала Δt i может быть вычислен по формуле:

l = Δn i /(N ср Δt i),

где Δn i = N i - N i+1 - число отказов; N c p = (N i + N i +1)/2 - среднее число работоспособных изделий; N i , и N i+1 - количество работоспособных изделий в начале и конце промежутка времени Δt i .

Вероятность безотказной работы связана с величинами l(t) и f(t) следующими выражениями:

P(t) = exp(- l(t) dt), P(t) = exp(- f(t) dt)

Зная одну из характеристик надежности P(t), l(t) или f(t), можно найти две другие.

Если необходимо оценить условную вероятность, можно воспользоваться следующим выражением:

P(t 1 ; t 2) = exp(- l(t) dt).

Если РЭА содержит N последовательно соединенных однотипных эле­ментов, то l N (t) = Nl(t).

Средняя наработка на отказ Т ср и вероятность безотказной работы P(t) связаны зависимостью

Т ср = P(t) dt.

По статистическим данным

Т ср = Dn i t ср i , t ср i = (t i +t i +1)/2, m = t/Dt

где Δn i - количество отказавших изделий за интервал времени Δt ср i = (t i +1 -t i);

t i , t i +1 - соответственно время в начале и конце интервала испытаний (t 1 =0);

t - интервал времени, за который отказали все изделия; m - число времен­ных интервалов испытаний.

Средняя наработка до отказа To - это математическое ожидание наработки объекта до первого отказа:

To=1/l=1/(N*li), или, отсюда: l=1/To

Время безотказной работы равно обратной величине интенсивности отказов.

Например: технология элементов обеспечивает среднюю интенсивность отказов li=1*10 -5 1/ч. При использовании в объекта N=1*10 4 элементарных деталей суммарная интенсивность отказов lо= N*li=10 -1 1/ч. Тогда среднее время безотказной работы объекта To=1/lо=10 ч. Если выполнить объекта на основе 4-х больших интегральных схем (БИС), то среднее время безотказной работы объекта увеличится в N/4=2500 раз и составит 25000 ч. или 34 месяца или около 3 лет.

Пример. Из 20 неремонтируемых изделий в первый год эксплуатации отка­зало 10, во второй – 5, в третий - 5. Определить вероятность безотказной работы, частоту отка­зов, интенсивность отказов в первый год эксплуатации, а также среднюю наработку до первого отказа.

P(1)=(20-10)/20 = 0.5,

P(2)=(20-15)/20 = 0.25, P(1;2)= P(2)/ P(1) = 0.25/0.5 = 0.5,

P(3)=(20-20)/20 = 0, P(2;3)= P(3)/ P(2) = 0/0.25 = 0,

f(1)=10/(20·1) = 0.5 г -1 ,

f(2)=5/(20·1) = 0.25 г -1 ,

f(3)=5/(20·1) = 0.25 г -1 ,

l(1)=10/[(20*1] = 0.5 г -1 ,

l(2)=5/[(10*1] = 0.5 г -1 ,

l(3)=5/[(5*1] = 1 г -1 ,

Т ср = (10·0.5+5·1.5+5·2.5)/20 = 1.25 г.

Правильно понимать физическую природу и сущность отказов очень важно для обоснованной оценки надежности технических устройств. В практике эксплуатации различают три характерных типа отказов: приработочные, внезапные и отказы из-за износа. Они различаются физической природой, способами предупреждения и устранения и проявляются в различные периоды эксплуатации технических устройств.

Отказы удобно характеризовать «кривой жизни» изделия, которая иллюстрирует зависимость интенсивности происходящих в нем отказов l(t) от времени t. Такая идеализированная кривая для РЭА приведена на рисунке 7.2.1.


Рис. 7.2.1.

Она имеет три явно выраженных периода: приработки I, нормальной эксплуатации II, и износа III.

Приработочные отказы наблюдаются в первый период (0 - t 1) эксплуатации РЭА и возникают, когда часть элементов, входящих в состав РЭА, являются бракованными или имеют скрытые дефекты. Физический смысл приработочных отказов может быть объяснен тем, что электрические и механические нагрузки, приходящиеся на компоненты РЭА в приработочный период, превосходят их электрическую и механическую прочность. Поскольку продолжительность периода приработки РЭА определяется в основном интенсивностью отказов входящих в ее состав некачественных элементов, то продолжительность безотказной работы таких элементов обычно сравнительно низка, поэтому выявить и заменить их удается за сравнительно короткое время.

В зависимости от назначения РЭА период приработки может продолжаться от нескольких до сотен часов. Чем более ответственное изделие, тем больше продолжительность этого периода. Период приработки составляет обычно доли и единицы процента от времени нормальной эксплуатации РЭА во втором периоде.

Как видно из рисунка, участок «кривой жизни» РЭА, соответствующий периоду приработки I, представляет собой монотонно убывающую функцию l(t), крутизна которой и протяженность во времени тем меньше, чем совершеннее конструкция, выше качество ее изготовления и более тщательно соблюдены режимы приработки. Период приработки считают завершенным, когда интенсивность отказов РЭА приближается к минимально достижимой (для данной конструкции) величине l min в точке t 1 .

Приработочные отказы могут быть следствием конструкторских (например, неудачная компоновка), технологических (некачественное выполнение сборки) и эксплуатационных (нарушение режимов приработки) ошибок.

С учетом этого, при изготовлении изделий предприятиям рекомендуется проводить прогон изделий в течение нескольких десятков часов работы (до 2-5 суток) по специально разработанным методикам, в которых предусматривается работа при влиянии различных дестабилизирующих факторов (циклы непрерывной работы, циклы включений-выключений, изменения температуры, напряжения питания и пр.).

Период нормальной эксплуатации. Внезапные отказы наблюдаются во второй период (t 1 -t 2) эксплуатации РЭА. Они возникают неожиданно вследствие действия ряда случайных факторов, и предупредить их приближение практически не представляется возможным, тем более что к этому времени в РЭА остаются только полноценные компоненты. Однако и такие отказы все же подчиняются определенным закономерностям. В частности, частота их появления в течение достаточно большого промежутка времени одинакова в однотипных классах РЭА.

Физический смысл внезапных отказов может быть объяснен тем, что при быстром количественном изменении (обычно - резком увеличении) какого-либо параметра в компонентах РЭА происходят качественные изменения, в результате которых они утрачивают полностью или частично свои свойства, необходимые для нормального функционирования. К внезапным отказам РЭА относят, например, пробой диэлектриков, короткие замыкания проводников, неожиданные механические разрушения элементов конструкции и т. п.

Период нормальной эксплуатации РЭА характеризуется тем, что интенсивность ее отказов в интервале времени (t 1 -t 2) минимальна и имеет почти постоянное значение l min » const. Величина l min тем меньше, а интервал (t 1 – t 2) тем больше, чем совершеннее конструкция РЭА, выше качество ее изготовления и более тщательно соблюдены режимы эксплуатации. Период нормальной эксплуатации РЭА общетехнического назначения может продолжаться десятки тысяч часов. Он может даже превышать время морального старения аппаратуры.

Период износа. В конце строка службы аппаратуры количество отказов снова начинает нарастать. Они в большинстве случаев являются закономерным следствием постепенного износа и естественного старения используемых в аппаратуре материалов и элементов. Зависят они главным образом от продолжительности эксплуатации и «возраста» РЭА.

Средний срок службы компонента до износа - величина более определенная, чем время возникновения приработочных и внезапных отказов. Их появление можно предвидеть на основании опытных данных, полученных в результате испытаний конкретной аппаратуры.

Физический смысл отказов из-за износов может быть объяснен тем, что в результате постепенного и сравнительно медленного количественного изменения некоторого параметра компонента РЭА этот параметр выходит за пределы установленного допуска, полностью или частично утрачивает свои свойства, необходимые для нормального функционирования. При износе происходит частичное разрушение материалов, при старении - изменение их внутренних физико-химических свойств.

К отказам в результате износа относят потерю чувствительности, точности, механический износ деталей и др. Участок (t 2 -t 3) «кривой жизни» РЭА, соответствующий периоду износа, представляет собой монотонно возрастающую функцию, крутизна которой тем меньше (а протяженность во времени тем больше), чем более качественные материалы и комплектующие изделия использованы в аппаратуре. Эксплуатация аппаратуры прекращается, когда интенсивность отказов РЭА приблизится к максимально допустимой для данной конструкции.

Вероятность безотказной работы РЭА. Возникновение отказов в РЭА носит случайный характер. Следова­тельно, время безотказной работы есть случайная величина, для описания которой используют разные распределения: Вейбулла, экспоненциальный, Пуассона.

Отказы в РЭА, содержащей большое число однотипных неремонтируе­мых элементов, достаточно хорошо подчиняются распределению Вейбулла. Экспоненциальное распределение основано на предположении постоянной во времени интенсивности отказов и успешно может быть использовано при расчетах надежности аппаратуры одноразового применения, содержащей большое число неремонтируемых компонентов. При длительной работе РЭА для планирования ее ремонта важно знать не вероятность возникновения отказов, а их число за определенный период эксплуатации. В этом случае применяют распределение Пуассона, позво­ляющее подсчитать вероятность появления любого числа случайных собы­тий за некоторый период времени. Распреде­ление Пуассона применимо для оценки надежности ремонтируемой РЭА с простейшим потоком отказов.

Вероятность отсутствия отказа за время t составляет Р 0 = ехр(-t), а вероятность появления i отказов за то же время P i =  i t i exp(-t)/i!, где i = 0, 1, 2, ..., n - число отказов.

7.3. Структурная надежность аппаратуры

Структурная надежность любого радиоэлектронного аппарата, в том числе и РЭА, это его результирующая надежность при известной структурной схеме и известных значениях надежности всех элементов, составляющих структурную схему.

При этом под элементами понимаются как интегральные микросхемы, резисторы, конденсаторы и т. п., выполняющие определенные функции и включенные в общую электрическую схему РЭА, так и элементы вспомогательные, не входящие в структурную схему РЭА: соединения паяные, разъемные, элементы крепления и т. д.

Надежность указанных элементов достаточно подробно изложена в специальной литературе. При дальнейшем рассмотрении вопросов надежности РЭА будем исходить из того, что надежность элементов, составляющих структурную (электрическую) схему РЭА, задана однозначно.

Количественные характеристики структурной надежности РЭА.

Для их нахождения составляют структурную схему РЭА и указывают элементы устройства (блоки, узлы) и связи между ними.

Затем производят анализ схемы и выделяют элементы и связи, которые определяют выполнение основной функции данного устройства.

Из выделенных основных элементов и связей составляют функциональную (надежностную) схему, причем в ней выделяют элементы не по конструктивному, а по функциональному признаку с таким расчетом, чтобы каждому функциональному элементу обеспечивалась независимость, т. е. чтобы отказ одного функционального элемента не вызывал изменения вероятности появления отказа у другого соседнего функционального элемента. При составлении отдельных надежностных схем (устройств узлов, блоков) иногда следует объединять те конструктивные элементы, отказы которых взаимосвязаны, но не влияют на отказы других элементов.

Определение количественных показателей надежности РЭА с помощью структурных схем дает возможность решать вопросы выбора наиболее надежных функциональных элементов, узлов, блоков, из которых состоит РЭА, наиболее надежных конструкций, панелей, стоек, пультов, рационального порядка эксплуатации, профилактики и ремонта РЭА, состава и количества ЗИП.


Похожая информация.


При рассмотрении вопросов надежности часто бывает удобно представить себе дело так, словно на элемент действует поток отказов с некоторой интенсивностью l(t); элемент отказывает в тот момент, когда происходит первое событие этого потока.

Образ "потока отказов" приобретает реальный смысл, если отказавший элемент немедленно заменя­ется новым (восстанавливается). Последовательность случайных моментов времени, в которое проис­ходят отказы (рис.3.10), представляет собой некоторый поток событий, а интервалы между событиями - независимые случайные величины, распределенные по соответствующему закону распределения.

Понятие "интенсивности отказов" может быть введено для любого закона надежности с плотностью f(t); в общем случае интенсивность отказов l будет переменной величиной.

Интенсивностью (или иначе "опасностью") отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим n(t) - число элементов, оказавшихся исправными к моменту t, а m(t, t+Dt), как и раньше, - число элементов, отказавших на ма­лом участке времени (t, t+Dt). На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к мо­менту t элементов n(t). Нетрудно убедиться, что при большом N отношение будет приближенно равно интенсивности отказов l (t):

Действительно, при большом N n(t)»Np(t)

Но согласно формуле (3.4) ,

В работах по надежности приближенное выражение (3.8) часто рассматривают как определение ин­тенсивности отказов, т.е. её определяют как среднее число отказов в единицу времени, приходящееся на один работающий элемент .

Характеристике l(t) можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно . Действительно, рассмотрим элемент вероятности l(t)dt - вероятность того, что за время (t, t+dt) эле­мент перейдет из состояния "работает" в состояние "не работает", при условии, что до момента t он ра­ботал. В самом деле, безусловная вероятность отказа элемента на участке (t, t+dt) равна f(t)dt. Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента t;

В - элемент отказал на участке времени (t, t+dt).

По правилу умножения вероятностей: f(t)dt = P(АВ) = Р(А) Р(В/А).



Учитывая, что Р(А)=р(t), получим: ;

а величина l(t) есть не что иное, как условная плотность вероятности перехода от состояния "работает" в состояние "отказал" для момента t.

Если известна интенсивность отказов l(t), то можно выразить через нее надежность р(t). Учитывая, что f(t)=-p"(t), запишем формулу (3.7) в виде:

Интегрируя, получим: ,

Таким образом, надежность выражается через интенсивность отказов.

В частном случае, когда l(t)=l=const, формула (3.9) дает:

p(t)=e - l t , (3.10)

т.е. так называемый экспоненциальный закон надежности.

Пользуясь образом "потока отказов", можно истолковать не только формулу (3.10), но и более об­щую формулу (3.9). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности p(t) действует поток отказов с переменной интенсивностью l(t). Тогда формула (3.9) для р(t) выражает вероятность того, что на участке времени (0, t) не появиться не одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности, работу эле­мента, начиная с момента включения t=0, можно представлять себе так, что на элемент действует пуас­соновский закон отказов; для экспоненциального закона надежности этот поток будет с постоянной ин­тенсивностью l, а для неэкспоненциального - с переменной интенсивностью l(t).

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется но­вым . Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским . Действительно, интенсивность его будет зависеть не просто от времени t, прошедшего с начала всего процесса, а и от времени t, прошедшего со случайного момента включения именно данного элемента; значит, поток событий имеет последствие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отка­зать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса. но при переменной, а не при постоянной интен­сивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциаль­ного, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 3.11).

Параметр l этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой p(t) и осями коор­динат. Для этого нужно положить параметр l показательного закона равным

где - площадь, ограниченная кривой надежности p(t). Таким образом, если мы хотим характеризо­вать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интен­сивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определили величину как площадь, ограниченную кривой р(t). Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по стати­стическому материалу как среднее арифметическое всех наблюдённых значений случайной величины T - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую р(t).

Пример 1. Надежность элемента р(t) убывает со временем по линейному закону (рис. 3.12). Найти интенсивность отказов l(t) и среднее время безотказной работы элемента .

Решение. По формуле (3.7) на участке (0, t o) имеем:

Согласно заданному закону надежности

(0

Второй интеграл здесь равен .

Что касается первого, то он вычислен приближённо (численно): ,

откуда » 0,37+0,135=0,505.

Пример 3. Плотность распределения времени безотказной работы элемента постоянна на участке (t 0 , t 1) и равна нулю вне этого участка (рис. 3.16). Найти интенсивность отказов l(t).

Решение. Имеем: , (t o

График интенсивности отказов показан на рис. 3.17; при t® t 1, l(t)® ¥ .

1.1 Вероятность безотказной работы

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации, в пределах заданной наработки не произойдет ни одного отказа.
Вероятность безотказной работы обозначается как P (l ) , которая определяется по формуле (1.1):

где N 0 - число элементов в начале испытания; r (l ) - число отказов элементов к моменту наработки. Следует отметить, что чем больше величина N 0 , тем с большей точностью можно рассчитать вероятность P (l).
В начале эксплуатации исправного локомотива P (0) = 1, так как при пробеге l = 0 вероятность того, что ни один элемент не откажет, принимает максимальное значение - 1. С ростом пробега l вероятность P (l ) будет уменьшаться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность безотказной работы будет стремиться к нулю P (l →∞) = 0. Таким образом в процессе наработки величина вероятности безотказной работы изменяется в пределах от 1 до 0. Характер изменения вероятности безотказной работы в функции пробега показан на рис. 1.1.

Рис.2.1. График изменения вероятности безотказной работы P(l) в зависимости от наработки

Основными достоинствами использования данного показателя при расчетах является два фактора: во-первых, вероятность безотказной работы охватывает все факторы, влияющие на надежность элементов, позволяя достаточно просто судить о его надежности, т.к. чем больше величина P (l ), тем выше надежность; во-вторых, вероятность безотказной работы может быть использована в расчетах надежности сложных систем, состоящих из более чем одного элемента.

1.2 Вероятность отказа

Вероятностью отказа называют вероятность того, что при определенных условиях эксплуатации, в предела х заданной наработки произойдет хотя бы один отказ.
Вероятность отказа обозначается как Q (l ), которая определяется по формуле (1.2):

В начале эксплуатации исправного локомотива Q (0) = 0, так как при пробеге l = 0 вероятность того, что хотя бы один элемент откажет, принимает минимальное значение - 0. С ростом пробега l вероятность отказа Q (l ) будет увеличиваться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность отказа будет стремиться к единице Q (l →∞ ) = 1. Таким образом в процессе наработки величина вероятности отказа изменяется в пределах от 0 до 1. Характер изменения вероятности отказа в функции пробега показан на рис. 1.2. Вероятность безотказной работы и вероятность отказа являются событиями противоположными и несовместимыми.

Рис.2.2. График изменения вероятности отказа Q(l) в зависимости от наработки

1.3 Частота отказов

Частота отказов - это отношение числа элементов в единицу времени или пробега отнесенного к первоначальному числу испытуемых элементов. Другими словами частота отказов является показателем, характеризующим скорость изменения вероятности отказов и вероятности безотказной работы по мере роста длительности работы.
Частота отказов обозначается как и определяется по формуле (1.3):

где - количество отказавших элементов за промежуток пробега .
Данный показатель позволяет судить по его величине о числе элементов, которые откажут на каком-то промежутке времени или пробега, также по его величине можно рассчитать количество требуемых запасных частей.
Характер изменения частоты отказов в функции пробега показан на рис. 1.3.


Рис. 1.3. График изменения частоты отказов в зависимости от наработки

1.4 Интенсивность отказов

Интенсивность отказов представляет собой условную плотность возникновения отказа объекта, определяемую для рассматриваемого момента времени или наработки при условии, что до этого момента отказ не возник. Иначе интенсивность отказов - это отношение числа отказавших элементов в единицу времени или пробега к числу исправно работающих элементов в данный отрезок времени.
Интенсивность отказов обозначается как и определяется по формуле (1.4):

где

Как правило, интенсивность отказов является неубывающей функцией времени. Интенсивность отказов обычно применяется для оценки склонности к отказам в различные моменты работы объектов.
На рис. 1.4. представлен теоретический характер изменения интенсивности отказов в функции пробега.

Рис. 1.4. График изменения интенсивности отказов в зависимости от наработки

На графике изменения интенсивности отказов, изображенном на рис. 1.4. можно выделить три основных этапа отражающих процесс экс-плуатации элемента или объекта в целом.
Первый этап, который также называется этапом приработки, характеризуется увеличением интенсивности отказов в начальный период эксплуатации. Причиной роста интенсивности отказов на данном этапе являются скрытые дефекты производственного характера.
Второй этап, или период нормальной работы, характеризуется стремлением интенсивности отказов к постоянному значению. В течение этого периода могут возникать случайные отказы, в связи с появлением внезапной концентрации нагрузки, превышающей предел прочности элемента.
Третий этап, так называемый период форсированного старения. Характеризуется возникновением износовых отказов. Дальнейшая эксплуатация элемента без его замены становится экономически не рациональной.

1.5 Средняя наработка до отказа

Средняя наработка до отказа - это средний пробег безотказной работы элемента до отказа.
Средняя наработка до отказа обозначается как L 1 и определяется по формуле (1.5):

где l i - наработка до отказа элемента; r i - число отказов.
Средняя наработка до отказа может быть использована для предварительного определения сроков ремонта или замены элемента.

1.6 Среднее значение параметра потока отказов

Среднее значение параметра потока отказов характеризует среднюю плотность вероятности возникновения отказа объекта, определяемая для рассматриваемого момента времени.
Среднее значение параметра потока отказов обозначается как W ср и определяется по формуле (1.6):

1.7 Пример расчета показателей безотказности

Исходные данные.
В течение пробега от 0 до 600 тыс. км., в локомотивном депо произведен сбор информации по отказам ТЭД. При этом количество исправных ТЭД в начале периода эксплуатации составляло N0 = 180 шт. Суммарное количество отказавших ТЭД за анализируемый период составило ∑r(600000) = 60. Интервал пробега принять равным 100 тыс. км. При этом количество отказавших ТЭД по каждому участку составило: 2, 12, 16, 10, 14, 6.

Требуется.
Необходимо рассчитать показатели безотказности и построить их зависимости изменения во времени.

Сначала необходимо заполнить таблицу исходных данных так, как это показано в табл. 1.1.

Таблица 1.1.

Исходные данные к расчету
, тыс. км 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60

Первоначально по уравнению (1.1) определим для каждого участка пробега величину вероятности безотказной работы. Так, для участка от 0 до 100 и от 100 до 200 тыс. км. пробега вероятность безотказной работы составит:

Произведем расчет частоты отказов по уравнению (1.3).

Тогда интенсивность отказов на участке 0-100 тыс.км. будет равна:

Аналогичным образом определим величину интенсивности отказов для интервала 100-200 тыс. км.

По уравнениям (1.5 и 1.6) определим среднюю наработку до отказа и среднее значение параметра потока отказов.

Систематизируем полученные результаты расчета и представим их в виде таблицы (табл. 1.2.).

Таблица 1.2.

Результаты расчета показателей безотказности
, тыс.км. 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60
P(l) 0,989 0,922 0,833 0,778 0,7 0,667
Q(l) 0,011 0,078 0,167 0,222 0,3 0,333
10 -7 , 1/км 1,111 6,667 8,889 5,556 7,778 3,333
10 -7 , 1/км 1,117 6,977 10,127 6,897 10,526 4,878

Приведем характер изменения вероятности безотказной работы ТЭД в зависимости от пробега (рис. 1.5.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности безотказной работы примет максимальное значение - 1.

Рис. 1.5. График изменения вероятности безотказной работы в зависимости от наработки

Приведем характер изменения вероятности отказа ТЭД в зависимости от пробега (рис. 1.6.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности отказа примет минимальное значение - 0.

Рис. 1.6. График изменения вероятности отказа в зависимости от наработки

Приведем характер изменения частоты отказов ТЭД в зависимости от пробега (рис. 1.7.).

Рис. 1.7. График изменения частоты отказов в зависимости от наработки

На рис. 1.8. представлена зависимость изменения интенсивности отказов от наработки.

Рис. 1.8. График изменения интенсивности отказов в зависимости от наработки

2.1 Экспоненциальный закон распределения случайных величин

Экспоненциальный закон достаточно точно описывает надежность узлов при внезапных отказах, имеющих случайный характер. Попытки применить его для других типов и случаев отказов, особенно постепенных, вызванных износом и изменением физико-химических свойств элементов показали его недостаточную приемлемость.

Исходные данные.
В результате испытания десяти топливных насосов высокого давления получены наработки их до отказа: 400, 440, 500, 600, 670, 700, 800, 1200, 1600, 1800 ч. Предполагая, что наработка до отказа топливных насосов подчиняется экспоненциальному закону распределения.

Требуется.
Оценить величину интенсивности отказов, а также рассчитать вероятность безотказной работы за первые 500 ч. и вероятность отказа в промежутке времени между 800 и 900 ч. работы дизеля.

Во-первых, определим величину средней наработки топливных насосов до отказа по уравнению:

Затем рассчитываем величину интенсивности отказов:

Величина вероятности безотказной работы топливных насосов при наработке 500 ч составит:

Вероятность отказа в промежутке между 800 и 900 ч. работы насосов составит:

2.2 Закон распределения Вэйбулла-Гнеденко

Закон распределения Вейбулла-Гнеденко получил широкое распространение и используется применительно к системам, состоящим из рядов элементов, соединенных последовательно с точки зрения обеспечения безотказности системы. Например, системы, обслуживающие дизель-генераторную установку: смазки, охлаждения, питания топливом, воздухом и т.д.

Исходные данные.
Время простоя тепловозов в неплановых ремонтах по вине вспомогательного оборудования подчиняется закону распределения Вейбулла-Гнеденко с параметрами b=2 и a=46.

Требуется.
Необходимо определить вероятность выхода тепловозов из неплановых ремонтов после 24 ч. простоя и время простоя, в течение которого работоспособность будет восстановлена с вероятностью 0,95.

Найдем вероятность восстановления работоспособности локомотива после простоя его в депо в течение суток по уравнению:

Для определения времени восстановления работоспособности локомотива с заданной величиной доверительной вероятности также используем выражение:

2.3 Закон распределения Рэлея

Закон распределения Рэлея используется в основном для анализа работы элементов, имеющих ярко выраженный эффект старения (элементы электрооборудования, различного рода уплотнения, шайбы, прокладки, изготовленные из резиновых или синтетических материалов).

Исходные данные.
Известно, что наработки контакторов до отказа по параметрам старения изоляции катушек можно описать функцией распределения Рэлея с параметром S = 260 тыс.км.

Требуется.
Для величины наработки 120 тыс.км. необходимо определить вероятность безотказной работы, интенсивность отказов и среднюю наработку до первого отказа катушки электромагнитного контактора.

3.1 Основное соединение элементов

Система, состоящая из нескольких независимых элементов, связанных функционально таким образом, что отказ любого из них вызывает отказ системы, отображается расчетной структурной схемой безотказной работы с последовательно соединенными событиями безотказной работы элементов.

Исходные данные.
Нерезервированная система состоит из 5 элементов. Интенсивности их отказов соответственно равны 0,00007; 0,00005; 0,00004; 0,00006; 0,00004 ч-1

Требуется.
Необходимо определить показатели надежности системы: интенсивность отказов, среднее время наработки до отказа, вероятность безотказной работы, частота отказов. Показатели надежности P(l) и a(l) получить в интервале от 0 до 1000 часов с шагом в 100 часов.

Вычислим интенсивность отказа и среднюю наработку до отказа по следующим уравнениям:

Значения вероятности безотказной работы и частоты отказов получим, используя уравнения приведенные к виду:

Результаты расчета P(l) и a(l) на интервале от 0 до 1000 часов работы представим в виде табл. 3.1.

Таблица 3.1.

Результаты расчета вероятности безотказной работы и частоты отказов системы на интервале времени от 0 до 1000 ч.
l , час P(l) a(l) , час -1
0 1 0,00026
100 0,974355 0,000253
200 0,949329 0,000247
300 0,924964 0,00024
400 0,901225 0,000234
500 0,878095 0,000228
600 0,855559 0,000222
700 0,833601 0,000217
800 0,812207 0,000211
900 0,791362 0,000206
1000 0,771052 0,0002

Графическая иллюстрация P(l) и a(l) на участке до средней наработки до отказа представлена на рис. 3.1, 3.2.

Рис. 3.1. Вероятность безотказной работы системы.

Рис. 3.2. Частота отказов системы.

3.2 Резервное соединение элементов

Исходные данные.
На рис. 3.3 и 3.4 показаны две структурные схемы соединения элементов: общего (рис. 3.3) и поэлементного резервирования (рис. 3.4). Вероятности безотказной работы элементов соответственно равны P1(l) = P ’1(l) = 0,95; P2(l) = P’2(l) = 0,9; P3(l) = P ’3(l) = 0,85.

Рис. 3.3. Схема системы с общим резервированием.

Рис. 3.4. Схема системы с поэлементным резервированием.

Вероятность безотказной работы блока из трех элементов без резервирования рассчитаем по выражению:

Вероятность безотказной работы той же системы при общем резервировании (рис. 3.3) составит:

Вероятности безотказной работы каждого из трех блоков при поэлементном резервировании (рис. 3.4) будут равны:

Вероятность безотказной работы системы при поэлементном резервировании составит:

Таким образом, поэлементное резервирование дает более существенное увеличение надежности (вероятность безотказной работы возросла с 0,925 до 0,965, т.е. на 4%).

Исходные данные.
На рис. 3.5 представлена система с комбинированным соединением элементов. При этом вероятности безотказной работы элементов имеют следующие значения: P1=0,8; Р2=0,9; Р3=0,95; Р4=0,97.

Требуется.
Необходимо определить надежность системы. Также необходимо определить надежность этой же системы при условии, что резервные элементы отсутствуют.

Рис.3.5. Схема системы при комбинированном функционировании элементов.

Для расчета в исходной системе необходимо выделить основные блоки. В представленной системе их три (рис. 3.6). Далее рассчитаем надежность каждого блока в отдельности, а затем найдем надежность всей системы.

Рис. 3.6. Сблокированная схема.

Надежность системы без резервирования составит:

Таким образом, система без резервирования является на 28% менее надежной, чем система с резервированием.



Загрузка...
Top