Выбор конфигурации распределительной сети. Разработка вариантов конфигурации лвс Разработка вариантов конфигурации компьютерной сети

Абдильбаев Р.Б.

Таразский государственный университетим.М.Х.Дулати, Казахстан

РАЗРАБОТКА ВАРИАНТОВ КОНФИГУРАЦИИ СЕТИ

Схемы электрических сетей должны с наименьшими затратами обеспечить необходимую надежность электроснабжения, требуемое качество энергии у приемников, удобство и безопасность эксплуатации сети, возможность ее дальнейшего развития и подключения новых потребителей. Электрическая сеть должна обладать также необходимой экономичностью и гибкостью.

В проектной практике для построения рациональной конфигурации сети применяют повариантный метод, согласно которому для заданного расположения потребителей намечается несколько вариантов, и из них на основе технико-экономического сравнения выбирается лучший.

В соответствии с Правилами Устройства Электроустановок (ПУЭ) нагрузки I категории должны обеспечиваться электроэнергией от двух независимых источников питания, и перерыв в их электроснабжении допускается лишь на период автоматического включения резервного питания. В большинстве случаев двухцепная линия не удовлетворяет требованиям надежности электроснабжения потребителей I категории, так как при повреждении опор, гололеде возможен полный перерыв питания. Для таких потребителей необходимо предусматривать не менее двух отдельных линий.

Для потребителей II категории в большинстве случаев также предусматривают питание по двум отдельным линиям либо по двухцепной линии. Однако, учитывая непродолжительность времени аварийного ремонта воздушных линий, электроснабжение нагрузок II категории допускается производить по одной воздушной линии.

Для электроприемника III категории достаточно питания по одной линии, питающейся от одного источника или в виде отпайки проходящей вблизи линии. Однако, здесь при аварийных и плановых ремонтов необходимо обеспечить время восстановления питания в пределах одних суток.

Принимаемая схема должна быть удобной и гибкой в эксплуатации, желательно однородной, такими качествами обладают многоконтурные схемы одного номинального напряжения. Отключение любой цепи в такой схеме сказывается в незначительной степени на ухудшении режима работы сети в целом.

Исходя из всех вышеперечисленных требований разработаны следующие варианты схемы сети для электроснабжения потребителей, которые представлены на рисунке 1.

Рис. 1. Разработанные варианты схемы районной электрической сети.

В качестве критерия сопоставления вариантов сети на данном этапе проектирования используем суммарные длины линий по каждому из вариантов. Этот критерий основывается на предположении, что все варианты схемы являются одного класса номинального напряжения и выполнены одинаковым сечением проводов на всех участках, использованы одинаковые типы опор, конструкции фаз и т.п.

Естественно, что наиболее рациональными и экономичными будут являться варианты с наименьшими суммарными длинами линий (с обязательным соблюдением требований по надёжности электроснабжения потребителей).

Длину линий определяем с учетом их непрямолинейности и возможных отклонений от намеченных трасс. Действительная длина принимается на 15% больше длины, измеренной по прямой линии.

Таблица 1 . Суммарные длины линий электропередач

Схема

№1

№2

№3

№4

Длина, км

405,24

377,52

381,48

384,12

Исходя, что схемы на рис.1.б и на рис.1.в имеют наименьшую суммарную протяженность, то они в дальнейшем и будут использоваться для подробного технико-экономического сравнения.

Заключение

Проведена формализация комплекса задач оптимального выбора решений при обосновании рациональной конфигурации систем электроснабжения в зависимости от территориальных уровней .

Литература

1. Справочник по проектированию электроэнергетических систем. Под ред. И.Ш. Шапиро, С.С. Рокотяна, - М.: Энергоатомиздат, 1985.

2. Методическое указание №1293 к курсовому проекту по курсу ² Электрические системы и сети ² для студентов спец. 10.04. Составил: Лычев П.В., Селиверстов Г.И.– ГПИ, 1990.

3. Лычев П.В., Федин В.Т. Электрические системы и сети. Решение практических задач: Учебное пособие для вузов. – Мн.: ДизайнПРО, 1997.

4. Методическое указание №3260 пособие по курсовому и дипломному проектированию для студентов специальности 1-43 01 03 ² Электроснабжение ² .– ГГТУ им. П.О. Сухого, Гомель, 2006.

5. Правила устройства электроустановок. –М.:Энергоатомиздат,1986.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Протяженность линий электропередачи. Установленная мощность трансформаторных подстанций. Энергетические показатели сети. Суммарный максимум активной нагрузки потребителей. Годовой полезный отпуск электроэнергии. Потери мощности в электрической сети.

    дипломная работа , добавлен 24.07.2012

    Разработка схем электрической сети района и предварительное распределение мощностей. Выбор номинальных напряжений линий, сечения и марок проводов, трансформаторов. Определение потерь мощности в трансформаторах, баланс активных и реактивных мощностей.

    дипломная работа , добавлен 04.09.2010

    Разработка схем электрической сети района. Предварительное распределение мощностей. Выбор номинальных напряжений линий, сечения и марок проводов. Определение потерь мощности в линиях. Выбор трансформаторов и схем подстанций. Расчёт количества линий.

    дипломная работа , добавлен 05.04.2010

    Разработка электрической сети района и предварительное распределение мощностей. Выбор номинальных напряжений, сечений и марок проводов. Определение потерь мощности в трансформаторах. Баланс активных и реактивных мощностей в системе. Выбор схем подстанций.

    дипломная работа , добавлен 16.06.2014

    Построение вариантов схемы электрической сети. Предварительный расчет потоков мощности. Выбор номинальных напряжений для кольцевой сети. Определение сопротивлений и проводимостей линий электропередачи. Проверка сечений по техническим ограничениям.

    курсовая работа , добавлен 29.03.2015

    Выбор вариантов развития существующей сети. Выбор номинальных напряжений сооружаемых воздушных линий радиального варианта сети. Определение сечений проводов сооружаемых линий радиального варианта сети. Выбор понижающих трансформаторов на подстанции.

    курсовая работа , добавлен 22.07.2014

    Выбор вариантов схемы соединений сети, их обоснование и предъявляемые требования. Определение номинальных напряжений сети, сечений проводов, проверка по техническим ограничениям. Приближенное определение потерь напряжения. Составление балансов мощностей.

    курсовая работа , добавлен 23.11.2014

    Составление вариантов схемы электрической сети и выбор наиболее рациональных из них. Расчет потокораспределения, номинальных напряжений, мощности в сети. Подбор компенсирующих устройств, трансформаторов и сечений проводов воздушных линий электропередачи.

    курсовая работа , добавлен 24.11.2013

1. Разработка 4-5 вариантов конфигурации сети

При выборе вариантов необходимо соблюдать два условия: сеть должна иметь по возможности меньшую длину; для каждого потребителя в зависимости от его категории должна быть обеспечена соответствующая степень надёжности.

В соответствии с ПУЭ нагрузки 1-й и 2-й категорий должны обеспечиваться электроэнергией от двух независимых источников питания, и перерыв их электроснабжения допускается лишь на время автоматического восстановления питания. Допускается питание потребителей 2-й категории от одного источника при соответствующем технико-экономическом обосновании. Для электроприёмников 3-й категории достаточно питания по одной линии, питающейся от одного источника или, в виде отпайки, от проходящей вблизи линии. В качестве критерия сопоставления вариантов сети на данном этапе проектирования рекомендуется использовать суммарную длину линий. Длины высоковольтных (одноцепных) линий увеличиваем на 20% из-за вероятного отклонения трассы линии электропередачи от длины прямой линии по причине изменения рельефа местности. Длины двухцепных линий при этом умножаются на 1,4 - во столько раз дороже двухцепная линия по сравнению с одноцепной.

Этот критерий основывается на предположении, что все варианты схемы имеют один класс номинального напряжения и выполнены одинаковым сечением проводов на всех участках, причём использованы одинаковые типы опор, конструкции фаз и т.д.

Конфигурация вариантов сети приведена на рисунке 1.1.

На основе выше изложенного принимаем для дальнейших расчётов варианты 1 и 2. Оба варианта имеют наименьшую протяженность сети ЛЭП, удовлетворяют требованиям по числу присоединений к категориям потребителей, имеют кольцевые схемы.

Рисунок 1.1- Варианты конфигурации сетей

2. Приближенные расчёты потокораспределения в нормальном режиме наибольших нагрузок для двух вариантов сети

Рассчитаем нагрузки потребителей:

где Q = P*tgц,

где Р - активная мощность потребителей, МВт;

tgц=0,672 - коэффициент реактивной мощности потребителей, определяемый на основании cosц=0,83.

Для ПС2:

Q = 14*0,672 = 9,4 МВ*Ар

S = 14+j9,4 MB*А

Результаты расчетов сводим в таблицу 2.1

Таблица 2.1 Значения нагрузок потребителей

Потребители

Катего-рия






Балансирующий узел























Для определения номинальных напряжений и сечений проводов для выбранных конфигураций сети необходимо рассчитать потоки мощности в ветвях схемы. На первом этапе проектирования эту задачу приходится решать приближённо. В качестве приближённого метода применим метод контурных уравнений, т.е. метод, с помощью которого расчёт потокораспределения ведётся в два этапа, когда на первом этапе выполняется расчёт без учёта потерь мощности и потерь напряжения, а на втором - расчеты уточняют с учётом потерь. Здесь используются результаты, полученные на первом этапе электрического расчёта. Чтобы создать предпосылки для возможности применения этого метода, прибегаем к допущениям:

Номинальные напряжения линий одинаковы;

Сечения проводов линий одинаковы, следовательно, их сопротивления пропорциональны их длинам, проводимости линий не учитываются;

Потери мощности в трансформаторах не учитываются.

Расчет приближенного потокораспределения для варианта №1

При одном источнике питания мощности на головных участках рассчитываем по выражению:


где l n и l ∑ длины противоположных плеч и суммы плеч соответственно.

Проверка:


Распределение мощностей на остальных участках рассчитываем по первому закону Кирхгофа.

Результаты расчёта с учётом направлений потоков мощности приведены на рисунке 2.1.

Рисунок 2.1- Результаты расчёта с учётом направлений потоков мощности для варианта №1

Расчет приближенного потокораспределения для варианта №2

Расчет приближенного потокораспределения для варианта №2 производим аналогично варианту №1.

Проверка


Результаты расчёта с учётом направлений потоков мощности приведены на рисунке 2.2.

Рисунок 2.2- Результаты расчёта с учётом направлений потоков мощности для варианта №2

3. Выбор номинального напряжения и числа цепей линий

Номинальное напряжение - это основной параметр сети, определяющий габаритные размеры линий, трансформаторов, подстанций, коммутационных аппаратов и их стоимость.

Выбранное напряжение должно соответствовать принятой систем номинальных напряжений в энергосистеме региона. Предварительный выбор номинальных напряжений осуществляется по экономическим зонам или по эмпирическим формулам :

Формула Стилла:


Формула Илларионова:

Формула Залеского:


где l и Р - длина линии, км, и мощность на одну цепь линии. МВт

Во всех случаях независимыми переменными при выборе номинальных напряжений являются длины линий и протекающие по ним активные мощности, которые были определены на этапе предварительного потокораспределения.

Произведём расчёт напряжений по экономически зонам и эмпирическим формулам для участка 1-2 варианта №1:

Линия 1-2 одноцепная, длиной 39,6 км, передаваемая активная мощность Р=38,113 МВт. На пересечении координат осей искомая точка попадает в зону U=110 кВ. Предварительно для данной линии принимаем напряжение 110 кВ.

Формула Стилла:

Формула Илларионова:

Формула Залеского:

Окончательно принимаем на участке сети 1-2 варианта №1 номинальное напряжение 110 кВ.

Аналогично производим расчет для остальных участков сети. Результаты расчета сводим в таблицу 3.1

Таблица 3.1 - Предварительный выбор номинального напряжения линий электропередачи

Номер Линии по схеме

Длина линии, км

Передаваемая Активная мощность, МВт

Расчётное номинальное напряжение, кВ

Принятое номинальное напряжение, кВ




по экономическим зонам

По эмпирическим формулам






Илларионова

Залесского


Вариант 1

Вариант 2


На участке 5-1 первого варианта принимаем линию двухцепной с номинальным напряжением 110 кВ.

На остальных участках сети принимаем одноцепные линии электропередач с номинальным напряжением 110 кВ.

4. Выбор сечения проводов и при необходимости ориентировочной мощности компенсирующих устройств. Уточнение конфигурации сети

Провода воздушных линий системообразующей сети выбираются по экономическим соображениям и проверяются по допустимому току нагрева в послеаварийных режимах, а также по условиям короны для линий 110 кВ и выше. Эти критерии являются независимыми друг от друга, и выбранное сечение провода должно удовлетворять каждому из них. Результаты расчётов можно представлять в виде таблицы 4.1. Эти расчёты выполняются для каждого из рассматриваемых вариантов.

Сечения проводов определяем по экономической плотности тока по формуле:

I-ток в проводнике при нормальной работе сети, А;

J э - экономическая плотность тока, определяемая в зависимости от материала токоведущего проводника, конструкции линии и времени использования максимальной нагрузки, А/мм 2 .

Согласно заданию, время использования максимальной нагрузки Т max =5100 ч для ПС2 и ПСЗ, и Т m ах =5200 ч для ПС4 и ПС5.

Так как значения Т m ах различны для потребителей, то для замкнутой сети находим Т ср:


Для варианта № 1:

Для варианта № 2:

По параметру Т ср и табл. 5.1 принимаем расчётное значение экономической плотности тока равное 1 А/мм 2 .

Проверка по условию короны:

U pa б - рабочее напряжение;

U кр - критическое напряжение короны;

m 0 - коэффициент, учитывающий состояние поверхности провода, для многопроволочных проводов m 0 =0,85;

m n - коэффициент, учитывающий состояние погоды, m п = 1 при сухой и ясной погоде;

д - коэффициент относительной плотности воздуха, учитывающий барометрическое давление и температуру воздуха, д=1;

r - радиус провода, см;

D - расстояние между осями проводов воздушной линии, см. Согласно стр.46 предварительно для расчётов среднее расстояние между проводами D может быть принято равным 400 см. В качестве материала для проводов воздушных линий используем сталеалюминевые провода марки АС диаметром не менее 11,3 мм (по условию образования короны). Наименьшее сечение провода должно удовлетворять условию: . Если критическое напряжение получается меньше рабочего (номинального), следует принимать меры для повышения критического напряжения, т.е. взять большее сечение.

Таблица 4.1 - Выбор сечений проводов воздушных линий

Номер линии

Расчётная мощность, MB*A

Расчётное сечение провода по экономическим условиям, мм 2

Проверка по условиям короны, кВ

Проверка по допустимому току нагрева, А

Принятое сечение и марка провода

Вариант 1

Вариант 2


Для проверки выбранных сечений по нагреву в замкнутой сети находим потокораспределение в различных послеаварийных режимах и соответствующие токи. Результаты расчета сводим в таблицу 4.2.

Таблица 4.2 - Результаты расчёта послеаварийного режима

Номер ветви

Ток, А, при отключении сети

Наибольшее значение тока, А

Вариант 1



Вариант 2риант 2




На всех участках сети ток в послеаварийном режиме не превышает допустимый ток по нагреву для выбранных проводов. Конфигурация сети для вариантов 1 и 2 остается такой же, как и в начале расчётов.

Согласно нормам технологического проектирования воздушных линий электропередачи напряжением 35 кВ и выше.

5. Выбор числа и мощности трансформаторов на подстанциях

На подстанциях, питающих потребителей I и II категории, для бесперебойности электроснабжения число трансформаторов должно быть не меньше двух. Мощность трансформаторов рекомендуется выбирать на условия всей нагрузки потребителей при выходе из строя одного трансформатора и с учётом допустимой перегрузки до 40%:

Мощность однотрансформаторной подстанции определяется максимальной загрузкой трансформатора в нормальном режиме (до 100%).

Коэффициент загрузки трансформатора в нормальном и послеаварийном режимах:


Рассмотрим выбор трансформаторов на примере подстанции 5.

Определим подключённую в момент максимума мощность:

Мощность трансформаторов с учётом допустимой перегрузки до 40%:

Принимаем по таблице 2.2 два трансформатора типа ТДН-2500/110.

Коэффициент загрузки трансформаторов в нормальном и послеаварийном режимах:

Аналогично произведём выбор трансформаторов для остальных подстанций. Результаты расчёта сведём в таблицу 5.1.

Таблица 5.1 - Выбор числа и мощности трансформаторов

Номер подстанции

Суммарная подключенная в момент максимума мощность, МВ*А

Мощность трансформаторов с учётом допустимой перегрузки, МВ*А

Число выбранных трансформаторов

Номинальная мощность каждого из выбранных трансформантов






В нормальном режиме, %

В аварийном режиме, %


Таблица 5.2 - Параметры трансформаторов

Тип и мощность, МВ*А

U ном обмоток, кВ





ТРДН - 25000/110

ТДН - 16000/110

ТДТН - 25000/110

ТДН - 16000/110


6. Технико-экономическое сравнение вариантов

При технико-экономическом сравнении 2-х вариантов допускается пользоваться упрошенными методами расчётов, а именно: не учитывать потери мощности в трансформаторах и линиях при определении распределении мощности в сети; находить распределение мощности в замкнутых сетях не по сопротивлениям линий, а по их длинам; не учитывать влияния зарядной мощности линий; определять потери напряжения по номинальному напряжению.

Годовые эксплуатационные расходы и себестоимость передачи электроэнергии не характеризуют в полной мере повышения производительности труда на единицу продукции, не дают полного представления об экономичности т к не учитывают затрат труда на производство прибавочного продукта. В полной мере оценку эффективности капиталовложений и экономичности того или иного сооружения может быть только учёт затрат всего общественного труда, необходимого для производства продукции.

Приведенные затраты могут быть определены но формуле:


Нормативный коэффициент эффективности капиталовложения;

K - капитальные затраты на сооружение электрической сети;

Капитальные затраты на сооружение ЛЭП:

К 0 - стоимость сооружения воздушных ЛЭП на 1 км длины.

Рассчитываем стоимость линий в ценах 1991 гола для двух вариантов. Результаты сводим в таблицу 6.1

Таблица 6.1 - Стоимость линий

Номер ветвей схемы

Длина линии, км

Марка и сечение провода, количество ветвей

Удельная стоимость тыс. руб./км

Полная стоимость лини тыс. руб.






Вариант 1

Вариант 2


Капитальные затраты на сооружение подстанции:

Стоимость трансформаторов, тыс. руб.;

Стоимость сооружения открытых распределительных устройств, тыс. руб.;

Постоянная часть затрат по подстанциям, тыс. руб.

Эти данные приводятся в таблицах . Результаты расчетов стоимости подстанций для двух вариантов сводим в таблицу 6.2.

Таблица 6.2 - Стоимость подстанций

Номер узла

Стоимость трансформаторов, тыс. руб.

Постоянная часть затрат, тыс. руб.

Стоимость распределительных устройств, тыс. руб.

Полная стоимость подстанции, тыс. руб.


Капитальные затраты на сооружение электрической сети:

Годовые эксплуатационные расходы:


Отчисления на амортизацию и обслуживание, %;

- для силового оборудования;

Для воздушных ЛЭП

ДW - потери энергии в трансформаторах и линиях. МВт*ч;

в - стоимость 1 кВт*ч потерянной энергии, руб/кВт*ч;

для силового оборудования в = 1,75*10 -2 руб/кВт*ч, для ЛЭП в = 2,23*10 -2 руб/кВт*ч.

Потери энергии в трансформаторах:


и - потери холостого хода и короткого замыкания, кВт;

Номинальная мощность трансформатора, МВ*А;

Продолжительность работы трансформатора,

Продолжность максимальных потерь, определяется в зависимости от продолжительности наибольшей нагрузки по формуле:

Потеря энергии в линии:


Номинальное напряжение, кВ;

Активная сопротивление линии, Ом, состоящее из активного сопротивления на единицу длины, Ом/км и длины линии, км.

Для замкнутой сети:

Годовые эксплуатационные расходы в линиях:

Годовые эксплуатационные расходы в трансформаторах подстанции:

Годовые эксплуатационные расходы в линиях:

Суммарные годовые эксплуатационные расходы:

Приведённые затраты:

Так как вариант 2 более дешёвый по сравнению с вариантом 1, то при дальнейших расчётах используем вариант 2.

7. Электрические расчёты характерных режимов сети: наибольших и наименьших нагрузок, наиболее тяжелого послеаварийного режима

Целью электрического расчёта сети является определение параметров режимов, выявление возможностей дальнейшего повышения экономичности работы сети и получение необходимых данных для решения вопросов регулирования напряжения.

В электрический расчёт входят распределение активных и реактивных мощностей по линиям сети, вычисление потерь активной и реактивной мощностей в сети, а также расчёт напряжений на шинах потребительских подстанций в основных нормальных и послеаварийных режимах.

Составляют схему замещения электрической сети (линии замещаются П-образной, трансформаторы - Г- образной) и определяют её параметры:

Для линии:

; ; ; ,

Удельная активное и реактивное сопротивления, Ом/км;

Удельная реактивная (емкостная) проводимость, См/км;

Длина линии, км.

Удельные параметры ЛЭП r 0 , х 0 и b 0 определяют по таблицам.

Для участка сети 1-2, длинной 30 км, выполненного проводом АС-95/16:

активное сопротивление:

реактивное сопротивление:

ёмкостная проводимость:

зарядная мощность, подключенная на концах участка:

Таблица 7.1 - Параметры ЛЭП

Учас-ток сети

Длина линии, км

Марка и сечение провода



Потери короткого замыкания, кВт;

Номинальное напряжение обмотки высшего напряжения, кВ;

Номинальная мощность трансформатора, МВ·А;

Напряжение короткого замыкания, %.

В расчётах электрических сетей 2-х обмоточные трансформаторы при U вн.ном ≤ 220 кВ представляются упрощённой схемой замещения, где вместо ветви намагничивания учитываются в виде дополнительной нагрузки потери холостого хода ∆Р х +j∆Q х:

.

Для подстанции 2:

Результаты расчётов сводят в таблицу 7.2

Таблица 7.2 - Параметры трансформаторов

Номер подстанции

Тип и мощность, МВ*А

Расчётные данные

ДQ х, мВ*Aр









ТРДН - 25000/110





2хТДН - 16000/110





2хТДТН - 25000/110

2хТДН - 16000/110






Для данных трансформаторов предел регулирования напряжения ±9 х 1,78%.

7.1 Электрический расчёт сети в режиме наибольших нагрузок

Нагрузки электрической сети обычно задаются на шинах вторичного напряжения районных или потребительских подстанций. Нагрузка сети высшего напряжения больше заданной нагрузки на величину потерь мощности в трансформаторах. Кроме того, необходимо учитывать зарядную мощность линии, которая обычно приводит к уменьшению реактивной нагрузки сети. Приводят нагрузки к сети ВН:

Р вн +jQ вн =(Р н +∆P х + ·т) + j(Q н +∆Q х + ·Хт - ∑ Q b),

Р н, Q н - активная и реактивная мощности нагрузок, заданных на стороне вторичного напряжения подстанций; т, Х т - суммарные активные и реактивные сопротивления трансформаторов данной подстанции;

∑Q b - суммарная зарядная мощность линий, приложенная в точке подключения данной нагрузки (подстанции).

Для подстанции 2:

Результаты расчетов сводят в таблицу 7.1.1

Таблица 7.1.1 - Расчётные нагрузки подстанций

Номер подстанции

P н + jQ н, МВ*А

∆P х + j∆Q х, МВ*А

∆P т + j∆Q т, МВ*А

∑Q b , МВ*Ар

P вн + jQ вн, МВ*А

10+j6,72 15+j10,08

Рисунок 7.1.1 - Потокораспределение на участках сети в режиме наибольших нагрузок

Таблица 7.1.2 - Распределение мощности на участках сети с учётом потерь мощности

Участок сети

Мощность в конце линии, МВ*А


Результаты электрического расчёта режима наибольших нагрузок приведены на листе графической части проекта.

7.2 Электрический расчёт сети в режиме наименьших нагрузок

Мощность потребителей в режиме наименьших нагрузок в общем определяется по графикам нагрузок. Иногда эта мощность задаётся в процентах от наибольшей мощности нагрузок. Этот процент зависит от характера потребителей и рода нагрузки. Согласно заданию: P нм = 0,5P нб.

Номер под-станции

P н + jQ н, МВ*А

∆P х + j∆Q х, МВ*А

∆P т + j∆Q т, МВ*А

∑Q b , МВ*Ар

P вн + jQ вн, МВ*А

5+j3,36 7,5+j5,04


Рисунок 7.1.1 - Потоктокораспределение на участках сети в режиме наименьших нагрузок

3 Электрический расчёт сети в nослеаварийном режиме

Наиболее тяжёлый случай аварии происходит при обрыве линии на головном участке 1-3. Поэтому рассмотрим аварийный случай при обрыве одноцепной линии на участке 1-3.

сеть электропередача конфигурация

Таблица 7.2.1 - Расчётные нагрузки подстанций

Номер под-станции

P н + jQ н, МВ*А

∆P х + j∆Q х, МВ*А


Рассчитаем потокораспределение на участках сети в послеаварийном режиме с учётом потерь мощности:


Результаты расчёта сведём в таблицу 7.3.2

Таблица 7.2.3 - Распределение мощности на участках сети с учётом потерь мощности

Участок сети

Мощность в начале линии, МВ*А

Потери мощности в линии, МВ*А

Мощность в конце линии, МВ*А


Введение

Электрическая подстанция-это установка, предназначенная для преобразования и распределения электрической энергии. Подстанции состоят из трансформаторов, сборных шин и коммутационных аппаратов, а также вспомогательного оборудования: устройств релейной защиты и автоматики, измерительных приборов. Подстанции предназначены для связи генераторов и потребителей с линиями электропередачи, а также для связи отдельны частей электрической системы.

Современные энергетические системы состоят из сотен связанных между собой элементов, влияющих друг на друга. Проектирование должно проводиться с учетом основных условий совместной работы элементов, влияющую на данную проектируемую часть системы. Намеченные проектные варианты должны удовлетворять следующим требованиям: надежности, экономичности, удобства эксплуатации, качества энергии и возможности дальнейшего развития.

В ходе курсового проектирования приобретаются навыки пользования справочной литературой, ГОСТами, едиными нормами и укрупненными показателями, таблицами.

В задачу курсового проектирования водит изучение практически инженерных методов решения комплексны вопросов сооружения линий электропередач, подстанций и других элементов электрически сетей и систем, а также дальнейшее развитие расчетно-графически навыков необходимых для проектной работы. Особенность проектирования электрических систем и сетей заключается в тесной взаимосвязи технических и экономических расчетов. Выбор наиболее дачного варианта электрической подстанции производится не только путем теоретических расчетов, но и на основе различных соображений.


ПРИМЕР РАСЧЕТА ОДНОГО ИЗ ВАРИАНТОВ СХЕМ

РАЙОННОЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ

Исходные данные

Масштаб: в 1 клетке – 8,5 км;

Коэффициент мощности на подстанции "А", отн. ед.: ;

Напряжение на шинах подстанции "А", кВ: , ;

Число часов использования максимальной нагрузки: ;

Максимальная активная нагрузка на подстанции, МВт: , , , , ;



Продолжительность перегрузки силовых трансформаторов в течение суток: ;

Коэффициенты реактивной мощности нагрузки на подстанциях имеют следующие значения: , , , , .

В составе потребителей на всех ПС имеются нагрузки I и II категорий по надежности электроснабжения с преобладанием нагрузок II категории.

1.1. Географическое расположение источника питания «А» и 5 узлов нагрузки

Выбор конфигурации распределительной сети

Выбор рациональной конфигурации распределительной сети является одним из главных вопросов, решаемых на начальных этапах проектирования. Выбор схемы сети производится на основе технико-экономического сопоставления ряда её вариантов. Сопоставимые варианты должны отвечать условиям технической осуществимости каждого из них по параметрам основного электрооборудования (провода, трансформаторы и т.п.), а также быть равноценными по надежности электроснабжения потребителей, относящихся к первой категории по .

Разработку вариантов нужно начинать на основе следующих принципов:

а) схема сети должна быть по возможности (обоснованно) простой и передача электроэнергии потребителям должна осуществляться по возможно кратчайшему пути, без обратных перетоков мощности, что обеспечивает снижение стоимости сооружения линий и уменьшение потерь мощности и электроэнергии;

б) схемы электрических соединений распределительных устройств понижающих подстанций также должны быть, возможно (обоснованно) простыми, что обеспечивает снижение их стоимости сооружения и эксплуатации, а также повышение надежности их работы;

в) следует стремиться осуществлять электрические сети с минимальным количеством трансформации напряжения, что снижает необходимую установленную мощность трансформаторов и автотрансформаторов, а также потери мощности и электроэнергии;

г) схемы электрических сетей должны обеспечивать надежность и необходимое качество электроснабжения потребителей, и не допускать перегрева и перегруза электрооборудования линий и подстанций (по токам в различных режимах сети, по механической прочности и т.п.)

Согласно ПУЭ при наличии потребителей I и II категорий на ПС электроснабжение от сетей энергосистемы должно выполняться не менее чем по двум линиям, подключенным к независимым источникам питания. С учетом выше изложенного и с учетом альтернативности качеств и показателей определенных типов схем сетей рекомендуется формирование в первую очередь вариантов схем сетей: радиального, радиально-магистрального, простейшего кольцевого типов.

Опираясь на изложенные условия, составим десять вариантов схем районной электрической сети (рис. 1.2.).

Схема№1 Схема№2

Схема№3 Схема№4

Схема№4 Схема№5

Схема№7 Схема№8

Рис.1.2. Варианты конфигурации схем электрической сети.

Из составленных схем для дальнейших расчетов по комплексу показателей и характеристик выбираем два наиболее рациональных варианта (№1 и № 2).

I. Вариант I (схема №1) предполагает присоединение подстанций № 1, 2, 3, 4, 5 к узлу А посредством двухцепных радиальных линий (строительство одноцепных и двухцепных линий 110 кВ общей длиной 187 км).

II. Вариант II (схема №2) предполагает присоединение подстанций №3 и №2 в кольцо от узла А, присоединение подстанций №4 и №5 в кольцо от узла А присоединение подстанции № 1 к узлу А посредством двухцепных радиальных линий (строительство одноцепных и двухцепных линий 110 кВ общей длиной 229,5 км).

Разработка вариантов конфигурации ЛВС. Итак, рассмотрим различные варианты конфигурации ЛВС для главного филиала центра службы занятости.

Учитывая основные задачи центра службы занятости, которые могут решаться с помощью ЛВС, затраты на монтаж и эксплуатацию сети, а также архитектурные особенности здания центра можно предложить следующие варианты конфигурации ЛВС. Таблица 2. Возможные варианты конфигурации ЛВС. КомпонентхарактеристикаВариант 1Вариант 2Вариант 3ТопологияШинаЗвезда-шинаЗвезда-шинаЛини я связиКоаксиальный кабельНеэкранированная или экранированная витая пара категории 3.Неэкранированная или экранированная витая пара категории 5 или 5е. Сетевые адаптерыEthernet 10 Base2Ethernet 10 BaseTFast Ethernet 100 BaseTXРетрансляторы повторители, концентраторы, коммутаторы, мосты, маршрутизаторы, шлюзыОтсутствуютКонцентраторКоммутатор 100 BaseTX с возможностью установки средств удалнного контроля, а также увеличения плотности портовУправление совместным использование ресурсовОдноранговая сеть каждый компьютер выступает в роли невыделенного сервераСеть на основе сервера с компьютерами-клиентами роль сервера -файловый серверСеть на основе сервера с компьютерами-клиентами клиент-серверная модель построенияСовместное использование периферийных устройствКаждый компьютер имеет сво собственное периферийное устройствоПодключение сетевого принтера управление очередями к принтеру осуществляет рабочая станцияПодключение сетевого принтера непосредственно к сетевому кабелю через сетевую плату, управление очередями к принтеру с помощью программного обеспечения сервераПоддерживаемые приложенияСовместная работа с одиночными документами обмен короткими сообщениями по ЛВССовместная работа с документами, работа с базами данныхв режиме файлового сервера DBF, парадоксЭлектронная почта, обработка факсимильных сообщений, организация коллективных работ в среде электронного документооборота, работа с базами данных с использованием специальных серверов 2.2.

Конец работы -

Эта тема принадлежит разделу:

Проектирование локальной вычислительной сети для агетства по трудоустройству

В условиях рыночной экономики информация выступает как один из важнейших товаров. Новейшие достижения в области микроэлектроники привели к новым.. Успех коммерческой и предпринимательской деятельности связан с муниципальными.. Любая компьютерная система, состоящая из нескольких компьютеров, наверняка перерастет в более сложную систему, которая..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Описание предметной области
Описание предметной области. Трудно представить современное предприятие, независимо от сферы его деятельности, без парка персональных компьютеров. И центр службы занятости не является исключением.

Обоснование потребности проектирования ЛВС
Обоснование потребности проектирования ЛВС. ЛВС - набор аппаратных средств и алгоритмов, которые обеспечивают соединение компьютеров и других периферийных устройств принтеров, дисковых контроллеров

Оценка различных вариантов конфигурации
Оценка различных вариантов конфигурации. Рассмотрим критерии, по которым мы будем оценивать эффективность предложенных выше конфигураций сети. 1. быстродействие 2. наджность 3. информационна

Спецификация ЛВС
Спецификация ЛВС. Таблица 3. Технические средства ТС вычислительной сети 10 рабочих станций 1 сервер сети. Таблица 1 Техничесике средства вычислительной сети. 10 рабочих станций 1 сервер сетиНаимен

Планирование информационной безопасности
Планирование информационной безопасности. Защита информации включает в себя комплекс мероприятий, направленных на обеспечение информационной безопасности. На практике под этим понимае

Расчет экономической эффективности от внедрения сети
Расчет экономической эффективности от внедрения сети. Источники экономической эффективности. Сетевые технологии значительно повышают эффективность делового применения компьютеров. Они

Расчт суммы затрат на текущую эксплуатацию ЛВС
Расчт суммы затрат на текущую эксплуатацию ЛВС. Рассчитаем капитальные затраты ККАО КПО Кмонтажа, где К - капитальные затраты КАО - стоимость аппаратного обеспечения КПО - стоимость ПО Кмонтажа - с

Расчт суммы затрат на решение задачи при отсутствии ЛВС
Расчт суммы затрат на решение задачи при отсутствии ЛВС. Рассчитаем капитальные затраты ККАО КПО При отсутствии ЛВС имеем следующие затраты на аппаратное обеспечение Принтеры HP LJ 1100C4224AA4 цен

Расчт коэффициента экономической эффективности капитальных вложений и срока окупаемости капитальных вложений
Расчт коэффициента экономической эффективности капитальных вложений и срока окупаемости капитальных вложений. Коэффициент экономической эффективности капитальных вложений Ер рассчитывается п



Загрузка...
Top